No Arabic abstract
Symmetry and topology play key roles in the identification of phases of matter and their properties. Both concepts are central to understanding quantum Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously broken spin or pseudospin symmetry whose wavefunctions also have topological properties. Domain walls between distinct broken symmetry QHFM phases are predicted to host gapless one-dimensional (1D) modes that emerge due to a topological change of the underlying electronic wavefunctions at such interfaces. Although a variety of QHFMs have been identified in different materials, probing interacting electronic modes at these domain walls has not yet been accomplished. Here we use a scanning tunneling microscope (STM) to directly visualize the spontaneous formation of boundary modes, within a sign-changing topological gap, at domain walls between different valley-polarized quantum Hall phases on the surface of bismuth. By changing the valley occupation and the corresponding number of modes at the domain wall, we can realize different regimes where the valley-polarized channels are either metallic or develop a spectroscopic gap. This behavior is a consequence of Coulomb interactions constrained by the symmetry-breaking valley flavor, which determines whether electrons in the topological modes can backscatter, making these channels a unique class of interacting Luttinger liquids.
We propose a new architecture for implementing electronic interferometry in quantum Hall bars. It exploits scattering among parallel edge channels. In contrast to previous developments, this one employs a simply-connected mesa admitting serial concatenation of building elements closer to optical analogues. Implementations of Mach-Zehnder and Hambury-Brown-Twiss interferometers are discussed together with new structures yet unexplored in quantum electronics.
We report measurements of the interaction-induced quantum Hall effect in a spin-polarized AlAs two-dimensional electron system where the electrons occupy two in-plane conduction band valleys. Via the application of in-plane strain, we tune the energies of these valleys and measure the energy gap of the quantum Hall state at filling factor $ u$ = 1. The gap has a finite value even at zero strain and, with strain, rises much faster than expected from a single-particle picture, suggesting that the lowest energy charged excitations at $ u=1$ are valley Skyrmions.
The boundary modes of one dimensional quantum systems can play host to a variety of remarkable phenomena. They can be used to describe the physics of impurities in higher dimensional systems, such as the ubiquitous Kondo effect or can support Majorana bound states which play a crucial role in the realm of quantum computation. In this work we examine the boundary modes in an interacting quantum wire with a proximity induced pairing term. We solve the system exactly by Bethe Ansatz and show that for certain boundary conditions the spectrum contains bound states localized about either edge. The model is shown to exhibit a first order phase transition as a function of the interaction strength such that for attractive interactions the ground state has bound states at both ends of the wire while for repulsive interactions they are absent. In addition we see that the bound state energy lies within the gap for all values of the interaction strength but undergoes a sharp avoided level crossing for sufficiently strong interaction, thereby preventing its decay. This avoided crossing is shown to occur as a consequence of an exact self-duality which is present in the model.
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.