Do you want to publish a course? Click here

Two-dimensional non-abelian BF theory in Lorenz gauge as a solvable logarithmic TCFT

124   0   0.0 ( 0 )
 Added by Pavel Mnev
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study two-dimensional non-abelian BF theory in Lorenz gauge and prove that it is a topological conformal field theory. This opens the possibility to compute topological string amplitudes (Gromov-Witten invariants). We found that the theory is exactly solvable in the sense that all correlators are given by finite-dimensional convergent integrals. Surprisingly, this theory turns out to be logarithmic in the sense that there are correlators given by polylogarithms and powers of logarithms. Furthermore, we found fields with logarithmic conformal dimension (elements of a Jordan cell for $L_0$). We also found certain vertex operators with anomalous dimensions that depend on the non-abelian coupling constant. The shift of dimension of composite fields may be understood as arising from the dependence of subtracted singular terms on local coordinates. This generalizes the well-known explanation of anomalous dimensions of vertex operators in the free scalar field theory.



rate research

Read More

We study the two-dimensional topological abelian BF theory in the Lorenz gauge and, surprisingly, we find that the gauged-fixed theory is a free type B twisted N=(2,2) superconformal theory with odd linear target space, with the ghost field c being the pullback of the linear holomorphic coordinate on the target. The BRST operator of the gauge-fixed theory equals the total Q of type B twisted theory. This unexpected identification of two different theories opens a way for nontrivial deformations of both of these theories.
We compute some arithmetic path integrals for BF-theory over the ring of integers of a totally imaginary field, which evaluate to natural arithmetic invariants associated to $mathbb{G}_m$ and abelian varieties.
Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor gauge theory formalism. Unlike in the Abelian case, the map between the ordinary gauge field and the basis tensor gauge field is nonlinear. To test the formalism, we compute the beta function and the two-point function at the one-loop level in non-Abelian basis tensor gauge theory and show that it reproduces the well-known results from the usual formulation of non-Abelian gauge theory.
On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$form fields. We also study in detail the interplay between this symmetry and a U(1) gauge symmetry, and in particular the implications of the automatic gauge-fixing of the latter associated to a residual gauge invariance, as well as the absence of self-interaction terms.
105 - Arata Yamamoto 2018
We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatial distribution of non-Abelian vortices suggests the repulsive vortex-vortex interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا