Do you want to publish a course? Click here

Transport in Magnetically Doped One-Dimensional Wires: Can the Helical Protection Emerge without the Global Helicity?

129   0   0.0 ( 0 )
 Added by Oleg Yevtushenko
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the phase diagram and transport properties of arbitrarily doped quantum wires functionalized by magnetic adatoms. The appropriate theoretical model for these systems is a dense one-dimensional Kondo Lattice (KL) which consists of itinerant electrons interacting with localized quantum magnetic moments. We discover the novel phase of the locally helical metal where transport is protected from a destructive influence of material imperfections. Paradoxically, such a protection emerges without a need of the global helicity, which is inherent in all previously studied helical systems and requires breaking the spin-rotation symmetry. We explain the physics of this protection of the new type, find conditions, under which it emerges, and discuss possible experimental tests. Our results pave the way to the straightforward realization of the protected ballistic transport in quantum wires made of various materials.



rate research

Read More

We study one-dimensional Kondo Lattices (KL) which consist of itinerant electrons interacting with Kondo impurities (KI) - localized quantum magnetic moments. We focus on KL with isotropic exchange interaction between electrons and KI and with a high KI density. The latter determines the principal role of the indirect interaction between KI for the low energy physics. Namely, the Kondo physics becomes suppressed and all properties are governed by spin ordering. We present a first-ever comprehensive analytical theory of such KL at an arbitrary doping and predict a variety of regimes with different electronic phases. They range from commensurate insulators (at filling factors 1/2, 1/4 and 3/4) to metals with strongly interacting conduction electrons (close to these three special cases) to an exotic phase of a helical metal. The helical metals can provide a unique platform for realization of an emergent protection of ballistic transport in quantum wires. We compare out theory with previously obtained numerical results and discuss possible experiments where the theory could be tested.
212 - Tzu-Chi Hsieh , Yang-Zhi Chou , 2020
We develop a theory of finite-temperature momentum-resolved tunneling spectroscopy (MRTS) for disordered, interacting two-dimensional topological-insulator edges. The MRTS complements conventional electrical transport measurement in characterizing the properties of the helical Luttinger liquid edges. Using standard bosonization technique, we study low-energy spectral function and the MRTS tunneling current, providing a detailed description controlled by disorder, interaction, and temperature, taking into account Rashba spin orbit coupling, interedge interaction and distinct edge velocities. Our theory provides a systematic description of the spectroscopic signals in the MRTS measurement and we hope will stimulate future experimental studies on the two-dimensional time-reversal invariant topological insulator.
The low-temperature Hall resistivity rho_{xy} of La_{2/3}A_{1/3}MnO_3 single crystals (where A stands for Ca, Pb and Ca, or Sr) can be separated into Ordinary and Anomalous contributions, giving rise to Ordinary and Anomalous Hall effects, respectively. However, no such decomposition is possible near the Curie temperature which, in these systems, is close to metal-to-insulator transition. Rather, for all of these compounds and to a good approximation, the rho_{xy} data at various temperatures and magnetic fields collapse (up to an overall scale), on to a single function of the reduced magnetization m=M/M_{sat}, the extremum of this function lying at m~0.4. A new mechanism for the Anomalous Hall Effect in the inelastic hopping regime, which reproduces these scaling curves, is identified. This mechanism, which is an extension of Holsteins model for the Ordinary Hall effect in the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads of Mn ions and spin-orbit interactions. We identify processes that lead to the Anomalous Hall Effect for localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to describe transport in manganites in terms of carrier hopping between states that are localized due to combined effect of magnetic and non-magnetic disorder. We attribute the qualitative variations in resistivity characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and conclude that both disorder-induced localization and self-trapping effects are important for transport.
We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develops in the defect band and survives defect disorder for $e$-$e$ interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold, otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter $k$ determines the exponent of the power-law dependence of the density of states at the chemical potential ($k-1$) and hence distinguishes between the soft gap ($kgeq2$) and the pseudogap ($k<2$) regimes. Both $k$ and the effective gap scale with the hopping integral and the $e$-$e$ interaction in a wide doping range. The motion of doped holes is confined by the closest defect potential and the overall spin-orbital structure. Such a generic behavior leads to complex non-hydrogen-like defect states that tend to preserve the underlying $C$-type spin and $G$-type orbital order and can be detected and analyzed via scanning tunneling microscopy.
The temperature dependence of conductivity $sigma (T)$ of a two-dimensional electron system in silicon has been studied in parallel magnetic fields B. At B=0, the system displays a metal-insulator transition at a critical electron density $n_c(0)$, and $dsigma/dT >0$ in the metallic phase. At low fields ($Blesssim 2$ T), $n_c$ increases as $n_c(B) - n_c(0) propto B^{beta}$ ($betasim 1$), and the zero-temperature conductivity scales as $sigma (n_s,B,T=0)/sigma (n_s,0,0)=f(B^{beta}/delta_n)$ (where $delta_n=(n_s-n_c(0))/n_c(0)$, and $n_s$ is electron density) as expected for a quantum phase transition. The metallic phase persists in fields of up to 18 T, consistent with the saturation of $n_c$ at high fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا