Do you want to publish a course? Click here

Robust Hidden Topology Identification in Distribution Systems

93   0   0.0 ( 0 )
 Added by Haoran Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With more distributed energy resources (DERs) connected to distribution grids, better monitoring and control are needed, where identifying the topology accurately is the prerequisite. However, due to frequent re-configurations, operators usually cannot know a complete structure in distribution grids. Luckily, the growing data from smart sensors, restricted by Ohm law, provides the possibility of topology inference. In this paper, we show how line parameters of Ohm equation can be estimated for topology identification even when there are hidden nodes. Specifically, the introduced learning method recursively conducts hidden-node detection and impedance calculation. However, the assumptions on uncorrelated data, availability of phasor measurements, and a balanced system, are not met in practices, causing large errors. To resolve these problems, we employ Cholesky whitening first with a proof for measurement decorrelations. For increasing robustness further, we show how to handle practical scenarios when only measurement magnitudes are available or when the grid is three-phase unbalanced. Numerical performance is verified on multi-size distribution grids with both simulation and real-world data.



rate research

Read More

Learning influence pathways of a network of dynamically related processes from observations is of considerable importance in many disciplines. In this article, influence networks of agents which interact dynamically via linear dependencies are considered. An algorithm for the reconstruction of the topology of interaction based on multivariate Wiener filtering is analyzed. It is shown that for a vast and important class of interactions, that respect flow conservation, the topology of the interactions can be exactly recovered. The class of problems where reconstruction is guaranteed to be exact includes power distribution networks, dynamic thermal networks and consensus networks. The efficacy of the approach is illustrated through simulation and experiments on consensus networks, IEEE power distribution networks and thermal dynamics of buildings.
This work studies the design of safe control policies for large-scale non-linear systems operating in uncertain environments. In such a case, the robust control framework is a principled approach to safety that aims to maximize the worst-case performance of a system. However, the resulting optimization problem is generally intractable for non-linear systems with continuous states. To overcome this issue, we introduce two tractable methods that are based either on sampling or on a conservative approximation of the robust objective. The proposed approaches are applied to the problem of autonomous driving.
362 - Daoyi Dong , Yuanlong Wang 2018
This paper summarizes several recent developments in the area of estimation and robust control of quantum systems and outlines several directions for future research. Quantum state tomography via linear regression estimation and adaptive quantum state estimation are introduced and a Hamiltonian identification algorithm is outlined. Two quantum robust control approaches including sliding mode control and sampling-based learning control are illustrated.
The paper introduces a novel methodology for the identification of coefficients of switched autoregressive linear models. We consider the case when the systems outputs are contaminated by possibly large values of measurement noise. It is assumed that only partial information on the probability distribution of the noise is available. Given input-output data, we aim at identifying switched system coefficients and parameters of the distribution of the noise which are compatible with the collected data. System dynamics are estimated through expected values computation and by exploiting the strong law of large numbers. We demonstrate the efficiency of the proposed approach with several academic examples. The method is shown to be extremely effective in the situations where a large number of measurements is available; cases in which previous approaches based on polynomial or mixed-integer optimization cannot be applied due to very large computational burden.
This paper considers the identification of FIR systems, where information about the inputs and outputs of the system undergoes quantization into binary values before transmission to the estimator. In the case where the thresholds of the input and output quantizers can be adapted, but the quantizers have no computation and storage capabilities, we propose identification schemes which are strongly consistent for Gaussian distributed inputs and noises. This is based on exploiting the correlations between the quantized input and output observations to derive nonlinear equations that the true system parameters must satisfy, and then estimating the parameters by solving these equations using stochastic approximation techniques. If, in addition, the input and output quantizers have computational and storage capabilities, strongly consistent identification schemes are proposed which can handle arbitrary input and noise distributions. In this case, some conditional expectation terms are computed at the quantizers, which can then be estimated based on binary data transmitted by the quantizers, subsequently allowing the parameters to be identified by solving a set of linear equations. The algorithms and their properties are illustrated in simulation examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا