Do you want to publish a course? Click here

Laser refrigeration using exciplex resonances in gas filled hollow-core fibres

77   0   0.0 ( 0 )
 Added by Christian Sommer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically study prospects and limitations of a new route towards macroscopic scale laser refrigeration based on exciplex-mediated frequency up-conversion in gas filled hollow-core fibres. Using proven quantum optical rate equations we model the dynamics of a dopant-buffer gas mixture filling an optically pumped waveguide. In the particular example of alkali-noble gas mixtures, recent high pressure gas cell setup experiments have shown that efficient kinetic energy extraction cycles appear via the creation of transient exciplex excited electronic bound states. The cooling cycle consists of absorption of lower energy laser photons during collisions followed by blue-shifted spontaneous emission on the atomic line of the alkali atoms. For any arbitrary dopant-buffer gas mixture, we derive scaling laws for cooling power, cooling rates and temperature drops with varying input laser power, dopant and buffer gas concentration, fibre geometry and particularities of the exciplex ground and excited state potential landscapes.



rate research

Read More

The exceptionally large polarisability of highly excited Rydberg atoms (six orders of magnitude higher than ground-state atoms) makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. If however they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturised devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n = 40. Besides small energy level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.
A new configuration for observation of magneto-optical subnatural-linewidth resonances of electromagnetically induced absorption (EIA) in alkali vapor has been verified experimentally. The configuration includes using two counter-propagating pump and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition of an alkali atom in the presence of a buffer gas. The main advantage of the novel observation scheme consists in the possibility of obtaining simultaneously high-contrast and quite narrow nonlinear signals. Here a 2.5-cm long rubidium-87 vapor cell filled with Ar buffer gas is used, and the excited optical transition is the F$_g$=2 $to$ F$_e$=1 of the D$_1$ line. The signals registered reach a contrast of 57.7% with a FWHM of 7.2 mG. The contrast with respect to a wide Doppler pedestal well exceeds 100%. To our knowledge, to date this is the best result for EIA resonances in terms of contrast-to-width ratio. In general, the results demonstrate that the new magneto-optical scheme has very good prospects for various applications in quantum metrology, nonlinear optics and photonics.
In this letter, an energetic and highly efficient dispersive wave (DW) generation at 200 nm has been numerically demonstrated by selectively exciting LP$_{02}$-like mode in a 10 bar Ar-filled hollow-core anti-resonant fiber pumping in the anomalous dispersion regime at 1030 nm with pulses of 30 fs duration and 7 $mu$J energy. Our calculations indicate high conversion efficiency of $>$35% (2.5 $mu$J) after propagating 3.6 cm fiber length which is due to the strong shock effect and plasma induced blue-shifted soliton. It is observed that the efficiency of fundamental LP$_{01}$-mode is about 15% which is much smaller than LP$_{02}$-like mode and also emitted at longer wavelength of 270 nm.
318 - S. Davtyan , D. Novoa , Y. Chen 2019
Broadband-tunable sources of circularly-polarized light are crucial in fields such as laser science, biomedicine and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components, and are limited by the availability of suitably transparent crystals and glasses. Although gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path-lengths, and high Raman conversion efficiency, it is unable to preserve circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on helically-twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining circular polarization state against external perturbations. This makes it possible to generate pure circularly-polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with fully-controllable polarization state.
We present a technique that uses noisy broadband pulse bursts generated by modulational instability to probe nonlinear processes, including infrared-inactive Raman transitions, in molecular gases. These processes imprint correlations between different regions of the noisy spectrum, which can be detected by acquiring single shot spectra and calculating the Pearson correlation coefficient between the different frequency components. Numerical simulations verify the experimental measurements and are used to further understand the system and discuss methods to improve the signal strength and the spectral resolution of the technique.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا