Do you want to publish a course? Click here

Magnetic eddy viscosity of mean shear flows in two-dimensional magnetohydrodynamics

58   0   0.0 ( 0 )
 Added by Jeffrey Parker
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic induction in magnetohydrodynamic fluids at magnetic Reynolds number (Rm) less than~1 has long been known to cause magnetic drag. Here, we show that when $mathrm{Rm} gg 1$ and the fluid is in a hydrodynamic-dominated regime in which the magnetic energy is much smaller than the kinetic energy, induction due to a mean shear flow leads to a magnetic eddy viscosity. The magnetic viscosity is derived from simple physical arguments, where a coherent response due to shear flow builds up in the magnetic field until decorrelated by turbulent motion. The dynamic viscosity coefficient is approximately $(B_p^2/2mu_0) tau_{rm corr}$, the poloidal magnetic energy density multiplied by the correlation time. We confirm the magnetic eddy viscosity through numerical simulations of two-dimensional incompressible magnetohydrodynamics. We also consider the three-dimensional case, and in cylindrical or spherical geometry, theoretical considerations similarly point to a nonzero viscosity whenever there is differential rotation. Hence, these results serve as a dynamical generalization of Ferraros law of isorotation. The magnetic eddy viscosity leads to transport of angular momentum and may be of importance to zonal flows in astrophysical domains such as the interior of some gas giants.



rate research

Read More

We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity) and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by transient growth mechanism due to shear flow nonnormality. This mechanism appears to be essentially anisotropic in spectral (wavenumber) plane and operates mainly for spatial Fourier harmonics with streamwise wavenumbers less than a ratio of flow shear to the Alfv{e}n speed, $k_y < S/u_A$ (i.e., the Alfv{e}n frequency is lower than the shear rate). We focused on the analysis of the character of nonlinear processes and underlying self-sustaining scheme of the turbulence, i.e., on the interplay between linear transient growth and nonlinear processes, in spectral plane. Our study, being concerned with a new type of the energy-injecting process for turbulence -- the transient growth, represents an alternative to the main trends of MHD turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows -- to the emph{bypass} concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in wavenumber plane [as occurs in the related hydrodynamic flow, see Horton et al., Phys. Rev. E {bf 81}, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.
We reveal and investigate a new type of linear axisymmetric helical magnetorotational instability which is capable of destabilizing viscous and resistive rotational flows with radially increasing angular velocity, or positive shear. This instability is double-diffusive by nature and is different from the more familiar helical magnetorotational instability, operating at positive shear above the Liu limit, in that it works instead for a wide range of the positive shear when ${rm (i)}$ a combination of axial/poloidal and azimuthal/toroidal magnetic fields is applied and ${rm (ii)}$ the magnetic Prandtl number is not too close to unity. We study this instability first with radially local WKB analysis and then confirm its existence using a global stability analysis of the magnetized flow between two rotating cylinders with conducting or insulating boundaries. From an experimental point of view, we also demonstrate the presence of the new instability in a magnetized viscous and resistive Taylor-Couette flow with positive shear for such values of the flow parameters, which can be realized in upcoming experiments at the DRESDYN facility. Finally, this instability might have implications for the dynamics of the equatorial parts of the solar tachocline and dynamo action there, since the above two necessary conditions for the instability to take place are satisfied in this region. Our global stability calculations for the tachocline-like configuration, representing a thin rotating cylindrical layer with the appropriate boundary conditions -- conducting inner and insulating outer cylinders -- and the values of the flow parameters, indicate that it can indeed arise in this case with a characteristic growth time comparable to the solar cycle period.
We demonstrate the dragging of the magnetic field by the super-Alfvenic shear flows out of the reconnection plane can strongly localize the reconnection x-line in collisionless plasmas, reversing the current direction at the x-line. Reconnection with this new morphology, which is impossible in resistive-magnetohydrodynamic (MHD), is enabled by electron inertia. Surprisingly, the quasi-steady reconnection rate remains of order 0.1 even though the aspect ratio of the local x-line geometry is larger than unity. We explain this by examining the transport of the reconnected magnetic flux and the opening angle made by the upstream magnetic field, concluding that the reconnection rate is still limited by the constraint imposed at the inflow region. This study further suggests the nearly universal fast rate value of order 0.1 cannot be explained by the physics of tearing modes, nor can it be explained by a universal localization mechanism.
314 - Yi-Hsin Liu , Michael Hesse 2016
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux facilitates reconnection, and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the current sheet and the resulting tearing modes, then the x-line is run over and swallowed by the faster-moving following flux.
We have advanced the energy and flux budget (EFB) turbulence closure theory that takes into account a two-way coupling between internal gravity waves (IGW) and the shear-free stably stratified turbulence. This theory is based on the budget equation for the total (kinetic plus potential) energy of IGW, the budget equations for the kinetic and potential energies of fluid turbulence, and turbulent fluxes of potential temperature for waves and fluid flow. The waves emitted at a certain level, propagate upward, and the losses of wave energy cause the production of turbulence energy. We demonstrate that due to the nonlinear effects more intensive waves produce more strong turbulence, and this, in turns, results in strong damping of IGW. As a result, the penetration length of more intensive waves is shorter than that of less intensive IGW. The anisotropy of the turbulence produced by less intensive IGW is stronger than that caused by more intensive waves. The low amplitude IGW produce turbulence consisting up to 90 % of turbulent potential energy. This resembles the properties of the observed high altitude tropospheric strongly anisotropic (nearly two-dimensional) turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا