No Arabic abstract
The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory and experiment. We report a combined computational, modeling, and experimental investigation leveraging new theoretical and experimental capabilities to investigate warm-dense boron nitride (BN). The simulation methodologies include path integral Monte Carlo (PIMC), several density functional theory (DFT) molecular dynamics methods [plane-wave pseudopotential, Fermi operator expansion (FOE), and spectral quadrature (SQ)], activity expansion (ACTEX), and all-electron Greens function Korringa-Kohn-Rostoker (MECCA), and compute the pressure and internal energy of BN over a broad range of densities ($rho$) and temperatures ($T$). Our experiments were conducted at the Omega laser facility and measured the Hugoniot of BN to unprecedented pressures (12--30 Mbar). The EOSs computed using different methods cross validate one another, and the experimental Hugoniot are in good agreement with our theoretical predictions. We assess that the largest discrepancies between theoretical predictions are $<$4% in pressure and $<$3% in energy and occur at $10^6$ K. We find remarkable consistency between the EOS from DFT calculations performed on different platforms and using different exchange-correlation functionals and those from PIMC using free-particle nodes. This provides strong evidence for the accuracy of both PIMC and DFT in the warm-dense regime. Moreover, SQ and FOE data have significantly smaller error bars than PIMC, and so represent significant advances for efficient computation at high $T$. We also construct tabular EOS models and clarify the ionic and electronic structure of BN over a broad $T-rho$ range and quantify their roles in the EOS. The tabular models may be utilized for future simulations of laser-driven experiments that include BN as a candidate ablator material.
Boron carbide (B$_4$C) is of both fundamental scientific and practical interest in inertial confinement fusion (ICF) and high energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B$_4$C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Greens function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B$_4$C over a broad range of temperatures ($sim$6$times$10$^3$--5$times$10$^8$ K) and densities (0.025--50 g/cm$^{3}$). We assess that the largest discrepancies between theoretical predictions are $lesssim$5% near the compression maximum at 1--2$times10^6$ K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are $sim$18% and occur at temperatures between 6$times$10$^3$--2$times$10$^5$ K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. In addition, we have developed three new equation of state models and applied them to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiments on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
We report accurate measurements of the equation of state (EOS) of cubic boron nitride by x-ray diffraction up to 160 GPa at 295 K and 80 GPa in the range 500-900 K. Experiments were performed on single-crystals embedded in a quasi-hydrostatic pressure medium (helium or neon). Comparison between the present EOS data at 295 K and literature allows us to critically review the recent calibrations of the ruby standard. The full P-V-T data set can be represented by a Mie-Gr{u}neisen model, which enables us to extract all relevant thermodynamic parameters: bulk modulus and its first pressure-derivative, thermal expansion coefficient, thermal Gr{u}neisen parameter and its volume dependence. This equation of state is used to determine the isothermal Gr{u}neisen mode parameter of the Raman TO band. A new formulation of the pressure scale based on this Raman mode, using physically-constrained parameters, is deduced.
We have synthesized boron nitride nanotubes (BNNTs) in an arc in presence of boron and nitrogen species only, without transition metals. We find that BNNTs are often attached to pure boron nanoparticles, suggesting that root-growth is a likely mechanism for their formation. To gain further insight into this process we have studied key mechanisms for root growth of BNNTs on the surface of a liquid boron droplet by ab initio molecular dynamics simulations. We find that nitrogen atoms reside predominantly on the droplet surface where they organize to form boron nitride islands below 2400 K. To minimize contact with the liquid particle underneath, the islands assume non-planar configurations that are likely precursors for the thermal nucleation of cap structures. Once formed, the caps are stable and can easily incorporate nitrogen and boron atoms at their base, resulting in further growth. Our simulations support the root-growth mechanism of BNNTs and provide comprehensive evidence of the active role played by liquid boron.
A ring-shaped carbon allotrope was recently synthesized for the first time, reinvigorating theoretical interest in this class of molecules. The dual $pi$ structure of these molecules allows for the possibility of novel electronic properties. In this work we use reduced density matrix theory to study the electronic structure and conductivity of cyclo[18]carbon and its boron nitride analogue, Btextsubscript{9}Ntextsubscript{9}. The variational 2RDM method replicates the experimental polyynic geometry of cyclo[18]carbon. We use a current-constrained 1-electron reduced density matrix (1-RDM) theory with Hartree-Fock molecular orbitals and energies to compute the molecular conductance in two cases: (1) conductance in the plane of the molecule and (2) conductance around the molecular ring as potentially driven by a magnetic field through the molecules center. In-plane conductance is greater than conductance around the ring, but cyclo[18]carbon is slightly more conductive than Btextsubscript{9}Ntextsubscript{9} for both in-the-plane and in-the-ring conduction. The computed conductance per molecular orbital provides insight into how the orbitals---their energies and densities---drive the conduction.