Do you want to publish a course? Click here

Root-Growth of Boron Nitride Nanotubes: Experiments and textit{Ab Initio} Simulations

62   0   0.0 ( 0 )
 Added by Biswajit Santra
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have synthesized boron nitride nanotubes (BNNTs) in an arc in presence of boron and nitrogen species only, without transition metals. We find that BNNTs are often attached to pure boron nanoparticles, suggesting that root-growth is a likely mechanism for their formation. To gain further insight into this process we have studied key mechanisms for root growth of BNNTs on the surface of a liquid boron droplet by ab initio molecular dynamics simulations. We find that nitrogen atoms reside predominantly on the droplet surface where they organize to form boron nitride islands below 2400 K. To minimize contact with the liquid particle underneath, the islands assume non-planar configurations that are likely precursors for the thermal nucleation of cap structures. Once formed, the caps are stable and can easily incorporate nitrogen and boron atoms at their base, resulting in further growth. Our simulations support the root-growth mechanism of BNNTs and provide comprehensive evidence of the active role played by liquid boron.



rate research

Read More

In this work, we report our results on the geometric and electronic properties of hybrid graphite-like structure made up of silicene and boron nitride (BN) layers. We predict from our calculations that this hybrid bulk system, with alternate layers of honeycomb silicene and BN, possesses physical properties similar to those of bulk graphite. We observe that there exists a weak van der Waals interaction between the layers of this hybrid system in contrast to the strong inter-layer covalent bonds present in multi-layers of silicene. Furthermore, our results for the electronic band structure and the density of states show that it is a semi-metal and the dispersion around the Fermi level (E_F) is parabolic in nature and thus the charge carriers in this system behave as textit{Nearly-Free Particle-Like}. These results indicate that the electronic properties of the hybrid bulk system resemble closely those of bulk graphite. Around E_F the electronic band structures have contributions only from silicene layers and the BN layer act only as a buffer layer in this hybrid system since it does not contribute to the electronic properties near E_F. In case of bi-layers of silicene with a single BN layer kept in between, we observe a linear dispersion around E_F similar to that of graphene. However, the characteristic linear dispersion become parabola-like when the system is subjected to a compression along the transverse direction. Our present calculations show that the hybrid system based on silicon and BN can be a possible candidate for two dimensional layered system akin to graphite and multi-layers of graphene.
87 - Zhao Wang 2019
A gear effect is demonstrated at parallel and cross junctions between boron nitride nanotubes (BNNTs) via atomistic simulations. The atoms of neighboring BNNTs are meshed together at the junctions like gear teeth through long-range non-covalent interaction, which are shown to be able to transmit motion and power. The sliding motion of a BNNT can be spontaneously translated to rotating motion of an adjoining one or viceversa at a well-defined speed ratio. The transmittable motion and force strongly depend on the helical lattice structure of BNNTs represented by a chiral angle. The motion transmission efficiency of the parallel junctions increases up to a maximum for certain BNNTs depending on displacement rates. It then decreases with increasing chiral angles. For cross junctions, the angular motion transmission ratio increases with decreasing chiral angles of the driven BNNTs, while the translational one exhibits the opposite trend.
The ability to use photonic quasiparticles to control electromagnetic energy far below the diffraction limit is a defining paradigm in nanophotonics. An important recent development in this field is the measurement and manipulation of extremely confined phonon-polariton modes in polar dielectrics such as silicon carbide and hexagonal boron nitride, which pave the way for nanophotonics and extreme light-matter interactions in the mid-IR to THz frequency range. To further advance this promising field, it is of great interest to predict the optical response of recently discovered and yet-to-be-synthesized polaritonic materials alike. Here we develop a unified framework based on quantum linear response theory to calculate the spatially non-local dielectric function of a polar lattice in arbitrary dimensions. In the case of a three-dimensional bulk material, the spatially local limit of our calculation reproduces standard results for the dielectric response of a polar lattice. Using this framework, we provide ab initio calculations of the dielectric permittivity of important bulk polar dielectrics such as silicon carbide and hexagonal boron nitride in good agreement with experiments. From the ab initio theory, we are able to develop a microscopic understanding of which phonon modes contribute to each component of the dielectric function, as well as predict features in the dielectric function that are a result of weak TO phonons. This formalism also identifies regime(s) where quantum nonlocal effects may correct the phonon polariton dispersion, extremely relevant in recent atomic-scale experiments which confine electromagnetic fields to the scale of 1~nm. Finally, our work points the way towards first principles descriptions of the effect of interface phonons, phonon strong coupling, and chiral phonons on the properties of phonon polaritons.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiments on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
We introduced a method to obtain the continuum description of the elastic properties of mono- layer h-BN through ab initio density functional theory. This thermodynamically rigorous contin- uum description of the elastic response is formulated by expanding the elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. we obtained a total of fourteen nonzero independent elastic constants for the up to tenth-order tensor. We predicted the pressure dependent second-order elastic moduli. This continuum formulation is suitable for incorporation into the finite element method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا