Do you want to publish a course? Click here

The distance formula in algebraic spacetime theories

81   0   0.0 ( 0 )
 Added by Ettore Minguzzi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Lorentzian distance formula, conjectured several years ago by Parfionov and Zapatrin, has been recently proved by the second author. In this work we focus on the derivation of an equivalent expression in terms of the geometry of 2-spinors by using a partly original approach due to the first author. Our calculations clearly show the independence of the algebraic distance formula of the observer.



rate research

Read More

An integral equation method for scalar scattering in Schwarzschild spacetime is constructed. The zeroth-order and first-order scattering phase shift is obtained.
The Averaged Null Energy Condition (ANEC) states that the integral along a complete null geodesic of the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative. ANEC can be used to rule out spacetimes with exotic phenomena, such as closed timelike curves, superluminal travel and wormholes. We prove that ANEC is obeyed by a minimally-coupled, free quantum scalar field on any achronal null geodesic (not two points can be connected with a timelike curve) surrounded by a tubular neighborhood whose curvature is produced by a classical source. To prove ANEC we use a null-projected quantum inequality, which provides constraints on how negative the weighted average of the renormalized stress-energy tensor of a quantum field can be. Starting with a general result of Fewster and Smith, we first derive a timelike projected quantum inequality for a minimally-coupled scalar field on flat spacetime with a background potential. Using that result we proceed to find the bound of a quantum inequality on a geodesic in a spacetime with small curvature, working to first order in the Ricci tensor and its derivatives. The last step is to derive a bound for the null-projected quantum inequality on a general timelike path. Finally we use that result to prove achronal ANEC in spacetimes with small curvature.
The first mathematically consistent exact equations of quantum gravity in the Heisenberg representation and Hamilton gauge are obtained. It is shown that the path integral over the canonical variables in the Hamilton gauge is mathematically equivalent to the operator equations of quantum theory of gravity with canonical rules of quantization of the gravitational and ghost fields. In its operator formulation, the theory can be used to calculate the graviton S-matrix as well as to describe the quantum evolution of macroscopic system of gravitons in the non-stationary Universe or in the vicinity of relativistic objects. In the S-matrix case, the standard results are obtained. For problems of the second type, the original Heisenberg equations of quantum gravity are converted to a self-consistent system of equations for the metric of the macroscopic spacetime and Heisenberg operators of quantum fields. It is shown that conditions of the compatibility and internal consistency of this system of equations are performed without restrictions on the amplitude and wavelength of gravitons and ghosts. The status of ghost fields in the various formulations of quantum theory of gravity is discussed.
We study spacetime diffeomorphisms in Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.
The classical limit of polymer quantum theories yields a one parameter family of `effective theories labeled by lambda. Here we consider such families for constrained theories and pose the problem of taking the `continuum limit, lambda -> 0. We put forward criteria for such question to be well posed, and propose a concrete strategy based in the definition of appropriately constructed Dirac observables. We analyze two models in detail, namely a constrained oscillator and a cosmological model arising from loop quantum cosmology. For both these models we show that the program can indeed be completed, provided one makes a particular choice of lambda-dependent internal time with respect to which the dynamics is described and compared. We show that the limiting theories exist and discuss the corresponding limit. These results might shed some light in the problem of defining a renormalization group approach, and its associated continuum limit, for quantum constrained systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا