Do you want to publish a course? Click here

Resistivity phase diagram of cuprates revisited

78   0   0.0 ( 0 )
 Added by Damjan Pelc
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phase diagram of the cuprate superconductors has posed a formidable scientific challenge for more than three decades. This challenge is perhaps best exemplified by the need to understand the normal-state charge transport as the system evolves from Mott insulator to Fermi-liquid metal with doping. Here we report a detailed analysis of the temperature (T) and doping (p) dependence of the planar resistivity of simple-tetragonal HgBa$_2$CuO$_{4+delta}$ (Hg1201), the single-CuO$_2$-layer cuprate with the highest optimal $T_c$. The data allow us to test a recently proposed phenomenological model for the cuprate phase diagram that combines a universal transport scattering rate with spatially inhomogeneous (de)localization of the Mott-localized hole. We find that the model provides an excellent description of the data. We then extend this analysis to prior transport results for several other cuprates, including the Hall number in the overdoped part of the phase diagram, and find little compound-to-compound variation in (de)localization gap scale. The results point to a robust, universal structural origin of the inherent gap inhomogeneity that is unrelated to doping-related disorder. They are inconsistent with the notion that much of the phase diagram is controlled by a quantum critical point, and instead indicate that the unusual electronic properties exhibited by the cuprates are fundamentally related to strong nonlinearities associated with subtle nanoscale inhomogeneity.



rate research

Read More

We show that, contrary to previous belief, the transition to the antiferromagnetic state of Sr$_2$IrO$_4$ in zero magnetic field does show up in the transverse resistivity. We attribute this to a change in transverse integrals associated to the magnetic ordering, which is evaluated considering hopping of the localized charge. The evolution of the resistivity anomaly associated to the magnetic transition under applied magnetic field is studied. It tracks the magnetic phase diagram, allowing to identify three different lines, notably the spin-flip line, associated with the reordering of the ferromagnetic component of the magnetization, and an intriguing line for field induced magnetism, also corroborated by magnetization measurements.
140 - E. Hassinger , D. Aoki , G. Knebel 2009
UCoGe is one of the few compounds showing the coexistence of ferromagnetism and superconductivity at ambient pressure. With T_Curie = 3 K and T_SC = 0.6 K it is near a quantum phase transition; the pressure needed to suppress the magnetism is slightly higher than 1 GPa. We report simultaneous resistivity and ac-susceptibility measurements under pressure on a polycrystal with very large single-crystalline domains and a resistivity ratio of about 6. Both methods confirm the phase diagram established before by resistivity measurements on a polycrystal. The ferromagnetic phase is suppressed for P approximately 1.2 GPa. Astonishingly, the superconductivity persists at pressures up to at least 2.4 GPa. In other superconducting and ferromagnetic heavy fermion compounds like UGe2 and URhGe, the superconducting state is situated only inside the larger ferromagnetic region. Therefore, UCoGe seems to be the first example where superconductivity extends from the ferromagnetic to the paramagnetic region.
Pr$_4$Ni$_3$O$_8$ is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr$_4$Ni$_3$O$_8$ (Pr$_3$CeNi$_3$O$_8$) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates. We find that substantial Ce-doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low enough valence. The analogies with cuprates at different $d$ fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.
We investigate the hole dynamics in two prototypical high temperature superconducting systems: La$_{2-x}$Sr$_{x}$CuO$_{4}$ and YBa$_{2}$Cu$_{3}% $O$_{y}$ using a combination of DC transport and infrared spectroscopy. By exploring the effective spectral weight obtained with optics in conjunction with DC Hall results we find that the transition to the Mott insulating state in these systems is of the vanishing carrier number type since we observe no substantial enhancement of the mass as one proceeds to undoped phases. Further, the effective mass remains constant across the entire underdoped regime of the phase diagram. We discuss the implications of these results for the understanding of both transport phenomena and pairing mechanism in high-T$_{c}$ systems.
110 - S. Mishra , A. Demuer , D. Aoki 2021
CeRhIn$_5$ is a prototypical antiferromagnetic heavy-fermion compound, whose behavior in a magnetic field is unique. A magnetic field applied in the basal plane of the tetragonal crystal structure induces two additional phase transitions. When the magnetic field is applied along, or close to, the $c$ axis, a new phase characterized by a pronounced in-plane electronic anisotropy emerges at $B^* approx$ 30 T, well below the critical field, $B_c simeq$ 50 T, to suppress the antiferromagnetic order. The exact origin of this new phase, originally suggested to be an electronic-nematic state, remains elusive. Here we report low-temperature specific-heat measurements in CeRhIn$_5$ in high static magnetic fields up to 36 T applied along both the $a$ and $c$ axes. For fields applied along the $a$ axis, we confirmed the previously suggested phase diagram, and extended it to higher fields. This allowed us to observe a triple point at $sim$ 30 T, where the first-order transition from an incommensurate to commensurate magnetic structure merges into the onset of the second-order antiferromagnetic transition. For fields applied along the $c$ axis, we observed a small but distinct anomaly at $B^*$, which we discuss in terms of a possible field-induced transition, probably weakly first-order. We further suggest that the transition corresponds to a change of magnetic structure. We revise magnetic phase diagrams of CeRhIn$_5$ for both principal orientations of the magnetic field based entirely on thermodynamic anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا