Do you want to publish a course? Click here

Sr$_2$IrO$_4$ magnetic phase diagram, from resistivity

290   0   0.0 ( 0 )
 Added by Luc Fruchter
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that, contrary to previous belief, the transition to the antiferromagnetic state of Sr$_2$IrO$_4$ in zero magnetic field does show up in the transverse resistivity. We attribute this to a change in transverse integrals associated to the magnetic ordering, which is evaluated considering hopping of the localized charge. The evolution of the resistivity anomaly associated to the magnetic transition under applied magnetic field is studied. It tracks the magnetic phase diagram, allowing to identify three different lines, notably the spin-flip line, associated with the reordering of the ferromagnetic component of the magnetization, and an intriguing line for field induced magnetism, also corroborated by magnetization measurements.



rate research

Read More

We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our data on intrinsic and electron doped samples, show that primary doublon-holon pairs relax near to the chemical potential on a timescale shorter than $70$ fs. The subsequent cooling of low energy excitations takes place in two step: a rapid dynamics of $cong120$ fs is followed by a slower decay of $cong 1$ ps. The reported timescales endorse the analogies between Sr$_2$IrO$_4$ and copper oxides.
We report the existence of Griffiths phase (GP) and its influence on critical phenomena in layered Sr$_2$IrO$_4$ ferromagnet (T$_C$ = 221.5 K). The power law behavior of inverse magentic susceptibility, 1/$chi$(T) with exponent $lambda = 0.18(2)$ confirm the GP in the regime T$_C$ $<$ T $leq$ T$_G$ = 279.0(5) K. Moreover, the detailed critical analysis via modified Arrott plot method exhibits unrealistic critical exponents $beta$ = 0.77(1), $gamma$ = 1.59(2) and $delta = 3.06(4)$, in corroboration with magneto-caloric study. The abnormal exponent values have been viewed in context of ferromagnetic-Griffiths phase transition. The GP has been further analyzed using Bray model, which yields a reliable value of $beta$ = 0.19(2), belonging to the two-dimensional (2D) XYh$_4$ universality class with strong anisotropy present in Sr$_2$IrO$_4$. The present study proposes Bray model as a possible tool to investigate the critical behavior for Griffiths ferromagnets in place of conventional Arrott plot analysis. The possible origins of GP and its correlation with insulating nature of Sr$_2$IrO$_4$ have been discussed.
The anisotropic magnetic properties of Sr$_2$IrO$_4$ are investigated, using longitudinal and torque magnetometry. The critical scaling across $T_c$ of the longitudinal magnetization is the one expected for the 2D XY universality class. Modeling the torque for a magnetic field in the basal-plane, and taking into account all in-plane and out-of-plane magnetic couplings, we derive the effective 4-fold anisotropy $K_4 approx$ 1 10$^5$ erg mole$^{-1}$. Although larger than for the cuprates, it is found too small to account for a significant departure from the isotropic 2D XY model. The in-plane torque also allows us to put an upper bound for the anisotropy of a field-induced shift of the antiferromagnetic ordering temperature.
348 - D. Haskel , G. Fabbris , J. H. Kim 2019
The effect of compression on the magnetic ground state of Sr$_2$IrO$_4$ is studied with x-ray resonant techniques in the diamond anvil cell. The weak interlayer exchange coupling between square-planar 2D IrO$_2$ layers is readily modified upon compression, with a crossover between magnetic structures around 7 GPa mimicking the effect of an applied magnetic field at ambient pressure. Higher pressures drive an order-disorder magnetic phase transition with no magnetic order detected above 17-20 GPa. The persistence of strong exchange interactions between $mathrm{J_{eff}}=1/2$ magnetic moments within the insulating IrO$_2$ layers up to at least 35 GPa points to a highly frustrated magnetic state in compressed Sr$_2$IrO$_4$ opening the door for realization of novel quantum paramagnetic phases driven by extended $5d$ orbitals with entangled spin and orbital degrees of freedom.
The magnetic excitations in electron doped (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with $x = 0.03$ were measured using resonant inelastic X-ray scattering at the Ir $L_3$-edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the parent compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the anti-nodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron doped Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with close analogies to the hole doped cuprates, further motivating the search for high temperature superconductivity in this system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا