Do you want to publish a course? Click here

Star Cluster Catalogs for the LEGUS Dwarf Galaxies

85   0   0.0 ( 0 )
 Added by David Cook Dr
 Publication date 2019
  fields Physics
and research's language is English
 Authors D.O. Cook




Ask ChatGPT about the research

We present the star cluster catalogs for 17 dwarf and irregular galaxies in the $HST$ Treasury Program Legacy ExtraGalactic UV Survey (LEGUS). Cluster identification and photometry in this subsample are similar to that of the entire LEGUS sample, but special methods were developed to provide robust catalogs with accurate fluxes due to low cluster statistics. The colors and ages are largely consistent for two widely used aperture corrections, but a significant fraction of the clusters are more compact than the average training cluster. However, the ensemble luminosity, mass, and age distributions are consistent suggesting that the systematics between the two methods are less than the random errors. When compared with the clusters from previous dwarf galaxy samples, we find that the LEGUS catalogs are more complete and provide more accurate total fluxes. Combining all clusters into a composite dwarf galaxy, we find that the luminosity and mass functions can be described by a power law with the canonical index of $-2$ independent of age and global SFR binning. The age distribution declines as a power law, with an index of $approx-0.80pm0.15$, independent of cluster mass and global SFR binning. This decline of clusters is dominated by cluster disruption since the combined star formation histories and integrated-light SFRs are both approximately constant over the last few hundred Myr. Finally, we find little evidence for an upper-mass cutoff ($<2sigma$) in the composite cluster mass function, and can rule out a truncation mass below $approx10^{4.5}$M$_{odot}$ but cannot rule out the existence of a truncation at higher masses.



rate research

Read More

83 - M. Cignoni 2019
We derive the recent star formation histories of 23 active dwarf galaxies using HST observations from the Legacy Extragalactic UV Survey (LEGUS). We apply a color-magnitude diagram fitting technique using two independent sets of stellar models, PARSEC-COLIBRI and MIST. Despite the non-negligible recent activity, none of the 23 star forming dwarfs show enhancements in the last 100 Myr larger than three times the 100-Myr-average. The unweighted mean of the individual SFHs in the last 100 Myr is also consistent with a rather constant activity, irrespective of the atomic gas fraction. We confirm previous results that for dwarf galaxies the CMD-based average star formation rates (SFRs) are generally higher than the FUV-based SFR. For half of the sample, the 60-Myr-average CMD-based SFR is more than two times the FUV SFR. In contrast, we find remarkable agreement between the 10-Myr-average CMD-based SFR and the H${alpha}$-based SFR. Finally, using core helium burning stars of intermediate mass we study the pattern of star formation spatial progression over the past 60 Myr, and speculate on the possible triggers and connections of the star formation activity with the environment in which these galaxies live. Approximately half of our galaxies show spatial progression of star formation in the last 60 Myr, and/or very recent diffuse and off-center activity compared to RGB stars.
One of the main theories for explaining the formation of spiral arms in galaxies is the stationary density wave theory. This theory predicts the existence of an age gradient across the arms. We use the stellar cluster catalogues of the galaxies NGC 1566, M51a, and NGC 628 from the Legacy Extragalactic UV Survey (LEGUS) program. In order to test for the possible existence of an age sequence across the spiral arms, we quantified the azimuthal offset between star clusters of different ages in our target galaxies. We found that NGC 1566, a grand-design spiral galaxy with bisymmetric arms and a strong bar, shows a significant age gradient across the spiral arms that appears to be consistent with the prediction of the stationary density wave theory. In contrast, M51a with its two well-defined spiral arms and a weaker bar does not show an age gradient across the arms. In addition, a comparison with non LEGUS star cluster catalogues for M51a yields similar results. We believe that the spiral structure of M51a is not the result of a stationary density wave with a fixed pattern speed. Instead, tidal interactions could be the dominant mechanism for the formation of spiral arms. We also found no offset in the azimuthal distribution of star clusters with different ages across the weak spiral arms of NGC 628.
We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and Blue Compact Dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates, OB associations by mass and mass surface density, O stars by their numbers and near-ultraviolet absolute magnitudes, and HII regions by Halpha surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, HI surface density, and star formation rate surface density. We find no trend of cluster characteristics with environmental properties, implying that larger scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and HI surface density, and there is a trend of higher HII region Halpha surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas are found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of star formation rate density. However, there is an increase in the ratio of the number of clusters to number of O stars with pressure, perhaps reflecting an increase in clustering properties with star formation rate.
We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity ($D=3.82pm 0.27$ Mpc) we reach stars 3 magnitudes fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history spans the whole Hubble time, but due to the age-metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e. $sim 3$ Gyr. The most recent peak of star formation is around 10 Myr ago. The average surface density star formation rate over the whole galaxy lifetime is $0.01$ M$_{odot}$ yr$^{-1}$ kpc$^{-2}$. From our study it emerges that NGC 4449 has experienced a fairly continuous star formation regime in the last 1 Gyr with peaks and dips whose star formation rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its star formation history does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا