We present the star cluster catalogs for 17 dwarf and irregular galaxies in the $HST$ Treasury Program Legacy ExtraGalactic UV Survey (LEGUS). Cluster identification and photometry in this subsample are similar to that of the entire LEGUS sample, but special methods were developed to provide robust catalogs with accurate fluxes due to low cluster statistics. The colors and ages are largely consistent for two widely used aperture corrections, but a significant fraction of the clusters are more compact than the average training cluster. However, the ensemble luminosity, mass, and age distributions are consistent suggesting that the systematics between the two methods are less than the random errors. When compared with the clusters from previous dwarf galaxy samples, we find that the LEGUS catalogs are more complete and provide more accurate total fluxes. Combining all clusters into a composite dwarf galaxy, we find that the luminosity and mass functions can be described by a power law with the canonical index of $-2$ independent of age and global SFR binning. The age distribution declines as a power law, with an index of $approx-0.80pm0.15$, independent of cluster mass and global SFR binning. This decline of clusters is dominated by cluster disruption since the combined star formation histories and integrated-light SFRs are both approximately constant over the last few hundred Myr. Finally, we find little evidence for an upper-mass cutoff ($<2sigma$) in the composite cluster mass function, and can rule out a truncation mass below $approx10^{4.5}$M$_{odot}$ but cannot rule out the existence of a truncation at higher masses.
We present a study of the effective (half-light) radii and other structural properties of a systematically selected sample of young, massive star clusters (YMCs, $geq$$5times10^3$ M$_{odot}$ and $leq$200 Myr) in two nearby spiral galaxies, NGC 628 and NGC 1313. We use Hubble Space Telescope WFC3/UVIS and archival ACS/WFC data obtained by the Legacy Extragalactic UV Survey (LEGUS), an HST Treasury Program. We measure effective radii with GALFIT, a two-dimensional image-fitting package, and with a new technique to estimate effective radii from the concentration index (CI) of observed clusters. The distribution of effective radii from both techniques spans $sim$0.5-10 pc and peaks at 2-3 pc for both galaxies. We find slight positive correlations between effective radius and cluster age in both galaxies, but no significant relationship between effective radius and galactocentric distance. Clusters in NGC 1313 display a mild increase in effective radius with cluster mass, but the trend disappears when the sample is divided into age bins. We show that the vast majority of the clusters in both galaxies are much older than their dynamical times, suggesting they are gravitationally bound objects. We find that about half of the clusters in NGC 628 are underfilling their Roche lobes, based on their Jacobi radii. Our results suggest that the young, massive clusters in NGC 628 and NGC 1313 are expanding due to stellar mass loss or two-body relaxation and are not significantly influenced by the tidal fields of their host galaxies.
It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to $-2$ and an exponential truncation around $10^5 rm{M}_{odot}$ . While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region; a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the $H_2$ surface density measured as function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS) combined with archival ACS data of M51 are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at $1.00pm0.12times10^5 M_odot$. Through Monte Carlo simulations we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above $1times10^4 M_odot$, over this age range. The fraction of star formation happening in the form of bound clusters in M51 is $sim20%$ in the age range 10 to 100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
We derive the recent star formation histories of 23 active dwarf galaxies using HST observations from the Legacy Extragalactic UV Survey (LEGUS). We apply a color-magnitude diagram fitting technique using two independent sets of stellar models, PARSEC-COLIBRI and MIST. Despite the non-negligible recent activity, none of the 23 star forming dwarfs show enhancements in the last 100 Myr larger than three times the 100-Myr-average. The unweighted mean of the individual SFHs in the last 100 Myr is also consistent with a rather constant activity, irrespective of the atomic gas fraction. We confirm previous results that for dwarf galaxies the CMD-based average star formation rates (SFRs) are generally higher than the FUV-based SFR. For half of the sample, the 60-Myr-average CMD-based SFR is more than two times the FUV SFR. In contrast, we find remarkable agreement between the 10-Myr-average CMD-based SFR and the H${alpha}$-based SFR. Finally, using core helium burning stars of intermediate mass we study the pattern of star formation spatial progression over the past 60 Myr, and speculate on the possible triggers and connections of the star formation activity with the environment in which these galaxies live. Approximately half of our galaxies show spatial progression of star formation in the last 60 Myr, and/or very recent diffuse and off-center activity compared to RGB stars.