Do you want to publish a course? Click here

Spectrum of light- and heavy-baryons

72   0   0.0 ( 0 )
 Added by Craig Roberts
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A symmetry-preserving truncation of the strong-interaction bound-state equations is used to calculate the spectrum of ground-state $J=1/2^+$, $3/2^+$ $(qq^prime q^{primeprime})$-baryons, where $q, q^prime, q^{primeprime} in {u,d,s,c,b}$, their first positive-parity excitations and parity partners. Using two parameters, a description of the known spectrum of 39 such states is obtained, with a mean-absolute-relative-difference between calculation and experiment of 3.6(2.7)%. From this foundation, the framework is subsequently used to predict the masses of 90 states not yet seen empirically.



rate research

Read More

A continuum approach to the three valence-quark bound-state problem in quantum field theory, employing parametrisations of the necessary kernel elements, is used to compute the spectrum and Poincare-covariant wave functions for all flavour-$SU(3)$ octet and decuplet baryons and their first positive-parity excitations. Such analyses predict the existence of nonpointlike, dynamical quark-quark (diquark) correlations within all baryons; and a uniformly sound description of the systems studied is obtained by retaining flavour-antitriplet--scalar and flavour-sextet--pseudovector diquarks. Thus constituted, the rest-frame wave function of every system studied is primarily $S$-wave in character; and the first positive-parity excitation of each octet or decuplet baryon exhibits the characteristics of a radial excitation. Importantly, every ground-state octet and decuplet baryon possesses a radial excitation. Hence, the analysis predicts the existence of positive-parity excitations of the $Xi$, $Xi^ast$, $Omega$ baryons, with masses, respectively (in GeV): 1.84(08), 1.89(04), 2.05(02). These states have not yet been empirically identified. This body of analysis suggests that the expression of emergent mass generation is the same in all $u$, $d$, $s$ baryons and, notably, that dynamical quark-quark correlations play an essential role in the structure of each one. It also provides the basis for developing an array of predictions that can be tested in new generation experiments.
In this contribution, we present a study of ground- and excited-state $Omega_c$ and $Omega_b$ baryons consisting of two strange quarks and a heavy charm or bottom quark. An analysis in the quark model shows that the recently observed excited $Omega_c$ and $Omega_b$ states can be interpreted in terms of $lambda$-mode excitations.
We compute masses of positive parity spin-$1/2$ and $3/2$ baryons composed of $u$, $d$, $s$, $c$ and $b$ quarks in a quark-diaquark picture. The mathematical foundation for this analysis is implemented through a symmetry-preserving Schwinger-Dyson equations treatment of a vector-vector contact interaction, which preserves key features of quantum chromodynamics, such as confinement, chiral symmetry breaking and low energy Goldberger-Treiman relations. This study requires a computation of diquark correlations containing these quarks which in turn are readily inferred from solving the Bethe-Salpeter equations of the corresponding mesons. Therefore, it serves as a unified formalism for a multitude of mesons and baryons. It builds on our previous works on the study of masses, decay constants and form factors of quarkonia and light mesons, employing the same model. We use two sets of parameters, one which remains exactly the same for both the light and heavy sector hadrons, and another where the coupling strength is allowed to evolve according to the available mass scales of quarks. Our results are in very good agreement with the existing experimental data as well as predictions of other theoretical approaches whenever comparison is possible.
We study the isospin mass differences of singly heavy baryons, based on a pion mean-field approach. We consider both the electromagnetic interactions and the hadronic contributions that arise from the mass difference of the up and down quarks. The relevant parameters have been already fixed by the baryon octet. In addition, we introduce the strong hyperfine interactions between the light quarks inside a chiral soliton and the Coulomb interactions between the chiral soliton and a heavy quark. The numerical results are in good agreement with the experimental data. In particular, the results for the neutral mass relations, which contain only the electromagnetic contributions, are in remarkable agreement with the data, which implies that the pion mean field approach provides a good description of the singly heavy baryons.
150 - R.M. Albuquerque 2009
We extract directly (for the first time) the charmed (C=1) and bottom (B=-1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa= <bar ss>/<bar dd> of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi_{c,b} and of the Omega_c. We obtain: kappa=0.74(3), which improves the existing estimates: kappa=0.70(10) from light hadrons. Using this value, we deduce M_{Omega_b}=6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi_Q and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega*_Q- Omega_Q and Xi*_Q-Xi_Q are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b= (-1/5 -- 0) found from light and non-strange heavy baryons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا