No Arabic abstract
The ground-state energies and radii for $^{4}$He, $^{16}$O, and $^{40}$Ca are calculated with the unitary-model-operator approach (UMOA). In the present study, we employ the similarity renormalization group (SRG) evolved nucleon-nucleon ($NN$) and three-nucleon ($3N$) interactions based on the chiral effective field theory. This is the first UMOA calculation with both $NN$ and $3N$ interactions. The calculated ground-state energies and radii are consistent with the recent {it ab initio} results with the same interaction. We evaluate the expectation values with two- and three-body SRG evolved radius operators, in addition to those with the bare radius operator. With the aid of the higher-body evolution of radius operator, it is seen that the calculated radii tend to be SRG resolution-scale independent. We find that the SRG evolution gives minor modifications for the radius operator.
We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors, to study nucleon-deuteron (Nd) scattering and selected low-energy observables in 3H, 4He, and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon force contributions agree well with expectations based on Weinbergs power counting. We identify the energy range in elastic Nd scattering best suited to study three-nucleon force effects and estimate the achievable accuracy of theoretical predictions for various observables.
Chiral symmetry allows two and three nucleon forces to be treated in a single theoretical framework. We discuss two new features of this research programme at $cO(q^4)$ and the consistency of the overall chiral picture.
We present calculations for symmetric nuclear matter using chiral nuclear interactions within the Self-Consistent Greens Functions approach in the ladder approximation. Three-body forces are included via effective one-body and two-body interactions, computed from an uncorrelated average over a third particle. We discuss the effect of the three-body forces on the total energy, computed with an extended Galitskii-Migdal-Koltun sum-rule, as well as on single-particle properties. Saturation properties are substantially improved when three-body forces are included, but there is still some underlying dependence on the SRG evolution scale.
Classes of two-nucleon ($2N$) contact interactions are developed in configuration space at leading order (LO), next-to-leading order (NLO), and next-to-next-to-next-to-leading order (N3LO) by fitting the experimental singlet $np$ scattering length and deuteron binding energy at LO, and $np$ and $pp$ scattering data in the laboratory-energy range 0--15 MeV at NLO and 0--25 MeV at N3LO. These interactions are regularized by including two Gaussian cutoffs, one for $T,$=$,0$ and the other for $T,$=$,1$ channels. The cutoffs are taken to vary in the ranges $R_0,$=$(1.5$--2.3) fm and $R_1,$=$(1.5$--3.0) fm. The 780 (1,100) data points up to 15 (25) MeV energy, primarily differential cross sections, are fitted by the NLO (N3LO) models with a $chi^2$/datum about 1.7 or less (well below 1.5), when harder cutoff values are adopted. As a first application, we report results for the binding energies of nuclei with mass numbers $A,$=$,3$--6 and 16 obtained with selected LO and NLO $2N$ models both by themselves as well as in combination with a LO three-nucleon ($3N$) contact interaction. The latter is characterized by a single low-energy constant that is fixed to reproduce the experimental $^3$H binding energy. The inclusion of the $3N$ interaction largely removes the sensitivity to cutoff variations in the few-nucleon systems and leads to predictions for the $^3$He and $^4$He binding energies that cluster around 7.8 MeV and 30 MeV, respectively. However, in $^{16}$O this cutoff sensitivity remains rather strong. Finally, predictions at LO only are also reported for medium-mass nuclei with $A,$=$,40$, 48, and 90.
Fragmentation cross section of $^{28}$Si + $^{9}$Be reaction at 75.8 MeV/u was analyzed for studying the decay mode of single-proton emission in $^{21}$Al (the proton-rich nucleus with neutron closed-shell of $N = 8$ and $T_z = -5/2$). With the comparison between the measured fragmentation cross section and the theoretical cross section produced by EPAX3.1a for the observed nuclei (i.e. $^{20}$Mg, $^{21}$Al and $^{22}$Si), the expected yield for a particle stable $^{21}$Al was estimated. With the exponential decay law, an upper limit of half-life of $13$ ns was determined. Using the single-proton penetration model, the upper limit of single-proton separation energy of $-105$ keV was deduced. This deduced mass limit agrees with the microscopic calculation based on nucleon-nucleon (NN) + three-nucleon (3N) forces in $sdf_{7/2}p_{3/2}$ valence space, which indicates the importance of 3N forces in $^{21}$Al.