No Arabic abstract
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements, the free group on two generators or the braid group of one of the types $A_2$, $B_2$ and $G_2$ factorized by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length $3$ and sphericity $2$. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type $D_4$ with torsion $3$ by generators and relations.
We prove that the action of a generalized braid group on an enhanced triangulated categories, generated by spherical twist functors along an ADE-configuration of $omega$-spherical objects, is faithful for any integer $omega eq 1$.
We study Dehn twists along Lagrangian submanifolds that are finite quotients of spheres. We decribe the induced auto-equivalences to the derived Fukaya category and explain its relation to twists along spherical functors.
In this paper we introduce the following new ingredients: (1) rework on part of the Lagrangian surgery theory; (2) constructions of Lagrangian cobordisms on product symplectic manifolds; (3) extending Biran-Cornea Lagrangian cobordism theory to the immersed category. As a result, we manifest Seidels exact sequences (both the Lagrangian version and the symplectomorphism version), as well as Wehrheim-Woodwards family Dehn twist sequence (including the codimension-1 case missing in the literature) as consequences of our surgery/cobordism constructions. Moreover, we obtain an expression of the autoequivalence of Fukaya category induced by Dehn twists along Lagrangian $mathbb{RP}^n$, $mathbb{CP}^n$ and $mathbb{HP}^n$, which matches Huybrechts-Thomass mirror prediction of the $mathbb{CP}^n$ case modulo connecting maps. We also prove the split generation of any symplectomorphism by Dehn twists in $ADE$-type Milnor fibers.
Following the ideas of Ginzburg, for a subgroup $K$ of a connected reductive $mathbb{R}$-group $G$ we introduce the notion of $K$-admissible $D$-modules on a homogeneous $G$-variety $Z$. We show that $K$-admissible $D$-modules are regular holonomic when $K$ and $Z$ are absolutely spherical. This framework includes: (i) the relative characters attached to two spherical subgroups $H_1$ and $H_2$, provided that the twisting character $chi_i$ factors through the maximal reductive quotient of $H_i$, for $i = 1, 2$; (ii) localization on $Z$ of Harish-Chandra modules; (iii) the generalized matrix coefficients when $K(mathbb{R})$ is maximal compact. This complements the holonomicity proven by Aizenbud--Gourevitch--Minchenko. The use of regularity is illustrated by a crude estimate on the growth of $K$-admissible distributions which based on tools from subanalytic geometry.
Let $(V,omega)$ be an orthosympectic $mathbb Z_2$-graded vector space and let $mathfrak g:=mathfrak{gosp}(V,omega)$ denote the Lie superalgebra of similitudes of $(V,omega)$. When the space $mathscr P(V)$ of superpolynomials on $V$ is emph{not} a completely reducible $mathfrak g$-module, we construct a natural basis $D_lambda$ of Capelli operators for the algebra of $mathfrak g$-invariant superpolynomial superdifferential operators on $V$, where the index set $mathcal P$ is the set of integer partitions of length at most two. We compute the action of the operators $D_lambda$ on maximal indecomposable components of $mathscr P(V)$ explicitly, in terms of Knop-Sahi interpolation polynomials. Our results show that, unlike the cases where $mathscr P(V)$ is completely reducible, the eigenvalues of a subfamily of the $D_lambda$ are emph{not} given by specializing the Knop-Sahi polynomials. Rather, the formulas for these eigenvalues involve suitably regularized forms of these polynomials. In addition, we demonstrate a close relationship between our eigenvalue formulas for this subfamily of Capelli operators and the Dougall-Ramanujan hypergeometric identity. We also transcend our results on the eigenvalues of Capelli operators to the Deligne category $mathsf{Rep}(O_t)$. More precisely, we define categorical Capelli operators ${mathbf D_{t,lambda}}_{lambdainmathcal P}^{}$ that induce morphisms of indecomposable components of symmetric powers of $mathsf V_t$, where $mathsf V_t$ is the generating object of $mathsf{Rep}(O_t)$. We obtain formulas for the eigenvalue polynomials associated to the $left{mathbf D_{t,lambda}right}_{lambdainmathcal P}$ that are analogous to our results for the operators ${D_lambda}_{lambdainmathcal P}^{}$.