No Arabic abstract
In this paper we introduce the following new ingredients: (1) rework on part of the Lagrangian surgery theory; (2) constructions of Lagrangian cobordisms on product symplectic manifolds; (3) extending Biran-Cornea Lagrangian cobordism theory to the immersed category. As a result, we manifest Seidels exact sequences (both the Lagrangian version and the symplectomorphism version), as well as Wehrheim-Woodwards family Dehn twist sequence (including the codimension-1 case missing in the literature) as consequences of our surgery/cobordism constructions. Moreover, we obtain an expression of the autoequivalence of Fukaya category induced by Dehn twists along Lagrangian $mathbb{RP}^n$, $mathbb{CP}^n$ and $mathbb{HP}^n$, which matches Huybrechts-Thomass mirror prediction of the $mathbb{CP}^n$ case modulo connecting maps. We also prove the split generation of any symplectomorphism by Dehn twists in $ADE$-type Milnor fibers.
We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstructions to and constructions of cobordisms; in particular, we give examples of symplectic tori in which the cobordism group has no non-trivial cobordism relations between pairwise distinct fibres, and ones in which the degree zero fibre cobordism group is a divisible group. The results are independent of but motivated by mirror symmetry, and a relation to rational equivalence of 0-cycles on the mirror rigid analytic space.
We study Dehn twists along Lagrangian submanifolds that are finite quotients of spheres. We decribe the induced auto-equivalences to the derived Fukaya category and explain its relation to twists along spherical functors.
We establish an infinitesimal version of fragility for squared Dehn twists around even dimensional Lagrangian spheres. The precise formulation involves twisting the Fukaya category by a closed two-form or bulk deforming it by a half-dimensional cycle. As our main application, we compute the twisted and bulk deformed symplectic cohomology of the subflexible Weinstein manifolds constructed in cite{murphysiegel}.
Given a Lagrangian cobordism $L$ of Legendrian submanifolds from $Lambda_-$ to $Lambda_+$, we construct a functor $Phi_L^*: Sh^c_{Lambda_+}(M) rightarrow Sh^c_{Lambda_-}(M) otimes_{C_{-*}(Omega_*Lambda_-)} C_{-*}(Omega_*L)$ between sheaf categories of compact objects with singular support on $Lambda_pm$ and its adjoint on sheaf categories of proper objects, using Nadler-Shendes work. This gives a sheaf theory description analogous to the Lagrangian cobordism map on Legendrian contact homologies and the adjoint on their unital augmentation categories. We also deduce some long exact sequences and new obstructions to Lagrangian cobordisms between high dimensional Legendrian submanifolds.
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements, the free group on two generators or the braid group of one of the types $A_2$, $B_2$ and $G_2$ factorized by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length $3$ and sphericity $2$. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type $D_4$ with torsion $3$ by generators and relations.