Do you want to publish a course? Click here

Monotonous continuous-time random walks with drift and stochastic reset events

206   0   0.0 ( 0 )
 Added by Miquel Montero
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we consider a stochastic process that may experience random reset events which bring suddenly the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonous continuous-time random walks with a constant drift: the process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence|for any drift strength|of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.



rate research

Read More

In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.
We prove that random walks in random environments, that are exponentially mixing in space and time, are almost surely diffusive, in the sense that their scaling limit is given by the Wiener measure.
We construct concrete examples of time operators for both continuous and discrete-time homogeneous quantum walks, and we determine their deficiency indices and spectra. For a discrete-time quantum walk, the time operator can be self-adjoint if the time evolution operator has a non-zero winding number. In this case, its spectrum becomes a discrete set of real numbers.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stochastically reset to a given position with a resetting rate $r$. The mean squared displacements of the CTRW and L{e}vy walks with stochastic resetting are calculated, uncovering that the stochastic resetting always makes the CTRW process localized and L{e}vy walk diffuse slower. The asymptotic behaviors of the probability density function of Levy walk with stochastic resetting are carefully analyzed under different scales of $x$, and a striking influence of stochastic resetting is observed.
134 - Miquel Montero 2011
The Continuous-Time Random Walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this article we will show how the random combination of two different unbiased CTRWs can give raise to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same of the Parrondos paradox in game theory
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا