Do you want to publish a course? Click here

Electronic thermal conductivity in 2D topological insulator in a HgTe quantum well

97   0   0.0 ( 0 )
 Added by Gennady Gusev M
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the differential resistance in a two-dimensional topological insulator (2DTI) in a HgTe quantum well, as a function of the applied dc current. The transport near the charge neutrality point is characterized by a pair of counter propagating gapless edge modes. In the presence of an electric field, the energy is transported by counter propagating channels in the opposite direction. We test a hot carrier effect model and demonstrate that the energy transfer complies with the Wiedemann Franz law near the charge neutrality point in the edge transport regime.



rate research

Read More

The two-dimensional topological insulator phase has been observed previously in single HgTe-based quantum wells with inverted subband ordering. In double quantum wells (DQWs), coupling between the layers introduces additional degrees of freedom leading to a rich phase picture. By studying local and nonlocal resistance in HgTe-based DQWs, we observe both the gapless semimetal phase and the topological insulator phase, depending on parameters of the samples and according to theoretical predictions. Our work establishes the DQWs as a promising platform for realization of multilayer topological insulators.
The microwave photoresistance of a two-dimensional topological insulator in a HgTe quantum well with an inverted spectrum has been experimentally studied under irradiation at frequencies of 110-169 GHz. Two mechanisms of formation of this photoresistance have been revealed. The first mechanism is due to transitions between the dispersion branches of edge current states, whereas the second mechanism is caused by the action of radiation on the bulk of the quantum well.
The thermoelectric response of HgTe quantum wells in the state of two-dimensional topological insulator (2D TI) has been studied experimentally. Ambipolar thermopower, typical for an electron-hole system, has been observed across the charge neutrality point, where the carrier type changes from electrons to holes according to the resistance measurements. The hole-type thermopower is much stronger than the electron-type one. The thermopower linearly increases with temperature. We present a theoretical model which accounts for both the edge and bulk contributions to the electrical conductivity and thermoelectric effect in a 2D TI, including the effects of edge to bulk leakage. The model, contrary to previous theoretical studies, demonstrates that the 2D TI is not expected to show anomalies of thermopower near the band conductivity threshold, which is consistent with our experimental results. Based on the experimental data and theoretical analysis, we conclude that the observed thermopower is mostly of the bulk origin, while the resistance is determined by both the edge and bulk transport.
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band kp Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian.
The results of experimental study of interference induced magnetoconductivity in narrow quantum well HgTe with the normal energy spectrum are presented. Analysis is performed with taking into account the conductivity anisotropy. It is shown that the fitting parameter tau_phi corresponding to the phase relaxation time increases in magnitude with the increasing conductivity (sigma) and decreasing temperature following the 1/T law. Such a behavior is analogous to that observed in usual two-dimensional systems with simple energy spectrum and corresponds to the inelasticity of electron-electron interaction as the main mechanism of the phase relaxation. However, it drastically differs from that observed in the wide HgTe quantum wells with the inverted spectrum, in which tau_phi being obtained by the same way is practically independent of sigma. It is presumed that a different structure of the electron multicomponent wave function for the inverted and normal quantum wells could be reason for such a discrepancy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا