No Arabic abstract
In this work we propose a model that can manipulate individual visual attributes of objects in a real scene using examples of how respective attribute manipulations affect the output of a simulation. As an example, we train our model to manipulate the expression of a human face using nonphotorealistic 3D renders of a face with varied expression. Our model manages to preserve all other visual attributes of a real face, such as head orientation, even though this and other attributes are not labeled in either real or synthetic domain. Since our model learns to manipulate a specific property in isolation using only synthetic demonstrations of such manipulations without explicitly provided labels, it can be applied to shape, texture, lighting, and other properties that are difficult to measure or represent as real-valued vectors. We measure the degree to which our model preserves other attributes of a real image when a single specific attribute is manipulated. We use digit datasets to analyze how discrepancy in attribute distributions affects the performance of our model, and demonstrate results in a far more difficult setting: learning to manipulate real human faces using nonphotorealistic 3D renders.
Learning deep neural networks that are generalizable across different domains remains a challenge due to the problem of domain shift. Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain without using any labels in the target domain. Contemporary techniques focus on extracting domain-invariant features using domain adversarial training. However, these techniques neglect to learn discriminative class boundaries in the latent representation space on a target domain and yield limited adaptation performance. To address this problem, we propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains. The proposed MetFA method explicitly and directly learns the latent representation without using domain adversarial training. Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain. We evaluate the proposed method on fetal ultrasound datasets for cross-device image classification. Experimental results demonstrate that the proposed method outperforms the state-of-the-art and enables model generalization.
Face image manipulation via three-dimensional guidance has been widely applied in various interactive scenarios due to its semantically-meaningful understanding and user-friendly controllability. However, existing 3D-morphable-model-based manipulation methods are not directly applicable to out-of-domain faces, such as non-photorealistic paintings, cartoon portraits, or even animals, mainly due to the formidable difficulties in building the model for each specific face domain. To overcome this challenge, we propose, as far as we know, the first method to manipulate faces in arbitrary domains using human 3DMM. This is achieved through two major steps: 1) disentangled mapping from 3DMM parameters to the latent space embedding of a pre-trained StyleGAN2 that guarantees disentangled and precise controls for each semantic attribute; and 2) cross-domain adaptation that bridges domain discrepancies and makes human 3DMM applicable to out-of-domain faces by enforcing a consistent latent space embedding. Experiments and comparisons demonstrate the superiority of our high-quality semantic manipulation method on a variety of face domains with all major 3D facial attributes controllable: pose, expression, shape, albedo, and illumination. Moreover, we develop an intuitive editing interface to support user-friendly control and instant feedback. Our project page is https://cassiepython.github.io/sigasia/cddfm3d.html.
Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from source to target. We propose to preserve the relative similarities and differences between instances in the source via a novel cross-domain distance consistency loss. To further reduce overfitting, we present an anchor-based strategy to encourage different levels of realism over different regions in the latent space. With extensive results in both photorealistic and non-photorealistic domains, we demonstrate qualitatively and quantitatively that our few-shot model automatically discovers correspondences between source and target domains and generates more diverse and realistic images than previous methods.
Deep generative models have become increasingly effective at producing realistic images from randomly sampled seeds, but using such models for controllable manipulation of existing images remains challenging. We propose the Swapping Autoencoder, a deep model designed specifically for image manipulation, rather than random sampling. The key idea is to encode an image with two independent components and enforce that any swapped combination maps to a realistic image. In particular, we encourage the components to represent structure and texture, by enforcing one component to encode co-occurrent patch statistics across different parts of an image. As our method is trained with an encoder, finding the latent codes for a new input image becomes trivial, rather than cumbersome. As a result, it can be used to manipulate real input images in various ways, including texture swapping, local and global editing, and latent code vector arithmetic. Experiments on multiple datasets show that our model produces better results and is substantially more efficient compared to recent generative models.
Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.