Do you want to publish a course? Click here

Efficient High-dimensional Quantum Key Distribution with Hybrid Encoding

167   0   0.0 ( 0 )
 Added by W. Son
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a schematic setup of quantum key distribution (QKD) with an improved secret key rate based on high-dimensional quantum states. Two degrees-of-freedom of a single photon, orbital angular momentum modes, and multi-path modes, are used to encode secret key information. Its practical implementation consists of optical elements that are within the reach of current technologies such as a multiport interferometer. We show that the proposed feasible protocol has improved the secret key rate with much sophistication compared to the previous 2-dimensional protocol known as the detector-device-independent QKD.



rate research

Read More

High-dimensional quantum key distribution (QKD) allows to achieve information-theoretic secure communications, providing high key generation rates which cannot in principle be obtained by QKD protocols with binary encoding. Nonetheless, the amount of experimental resources needed increases as the quantum states to be detected belong to a larger Hilbert space, thus raising the costs of practical high-dimensional systems. Here, we present a novel scheme for fiber-based 4-dimensional QKD, with time and phase encoding and one-decoy state technique. Quantum states transmission is tested over different channel lengths up to 145 km of standard single-mode fiber, evaluating the enhancement of the secret key rate in comparison to the three-state 2-dimensional BB84 protocol, which is tested with the same experimental setup. Our scheme allows to measure the 4-dimensional states with a simplified and compact receiver, where only two single-photon detectors are necessary, thus making it a cost-effective solution for practical and fiber-based QKD.
Privacy amplification (PA) is an essential part in a quantum key distribution (QKD) system, distilling a highly secure key from a partially secure string by public negotiation between two parties. The optimization objectives of privacy amplification for QKD are large block size, high throughput and low cost. For the global optimization of these objectives, a novel privacy amplification algorithm is proposed in this paper by combining multilinear-modular-hashing and modular arithmetic hashing. This paper proves the security of this hybrid hashing PA algorithm within the framework of both information theory and composition security theory. A scheme based on this algorithm is implemented and evaluated on a CPU platform. The results on a typical CV-QKD system indicate that the throughput of this scheme ([email protected]*10^8 input block size) is twice higher than the best existing scheme (140Mbps@1*10^8 input block size). Moreover, This scheme is implemented on a mobile CPU platform instead of a desktop CPU or a server CPU, which means that this algorithm has a better performance with a much lower cost and power consumption.
Quantum key distribution (QKD) gradually has become a crucial element of practical secure communication. In different scenarios, the security analysis of genuine QKD systems is complicated. A universal secret key rate calculation method, used for realistic factors such as multiple degrees of freedom encoding, asymmetric protocol structures, equipment flaws, environmental noise, and so on, is still lacking. Based on the correlations of statistical data, we propose a security analysis method without restriction on encoding schemes. This method makes a trade-off between applicability and accuracy, which can effectively analyze various existing QKD systems. We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol. Results imply that our method can give tighter bounds than the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) analysis and is beneficial to analyze protocols with complex encoding structures. Our work has the potential to become a reference standard for the security analysis of practical QKD.
High-dimensional quantum key distribution (QKD) provides ultimate secure communication with secure key rates that cannot be obtained by QKD protocols with binary encoding. However, so far the proposed protocols required additional experimental resources, thus raising the cost of practical high-dimensional systems and limiting their use. Here, we analyze and demonstrate a novel scheme for fiber-based arbitrary-dimensional QKD, based on the most popular commercial hardware for binary time bins encoding. Quantum state transmission is tested over 40 km channel length of standard single-mode fiber, exhibiting a two-fold enhancement of the secret key rate in comparison to the binary Coherent One Way (COW) protocol, without introducing any hardware modifications. This work holds a great potential to enhance the performance of already installed QKD systems by software update alone.
102 - Ming-Ming Wang , Lin-Ming Gong , 2018
Quantum cryptography has attracted much attention in recent years. In most existing quantum cryptographic protocols, players usually need the full quantum power of generating, manipulating or measuring quantum states. Semiquantum cryptography was proposed to deal with the issue that some players require only partial quantum power, such as preparing or measuring quantum states in the classical basis, which simplifies the implementations of quantum cryptography. However, the efficiency of the existing semiquantum cryptographic protocols was relatively low from a practical point of view. In this paper, we devise some new semiquantum key distribution (SQKD) protocols which highly improve the efficiency of the most well-known SQKD protocols [Phys. Rev. Lett. 99, 140501 (2007) & Phys. Rev. A 79, 052312 (2009)]. By letting players select their actions asymmetrically, the efficiency of our new protocols can be made asymptotically close to 100%. Besides, one of our proposed protocols also utilizes the discarded X-SIFT bits in the original SQKD protocol, which further improves the efficiency of SQKD. We prove that the proposed SQKD protocols are completely robust against the most general attack.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا