Do you want to publish a course? Click here

What the sudden death of solar cycles can tell us about the nature of the solar interior

113   0   0.0 ( 0 )
 Added by Scott McIntosh
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observe the abrupt end of solar activity cycles at the Suns equator by combining almost 140 years of observations from ground and space. These terminator events appear to be very closely related to the onset of magnetic activity belonging to the next sunspot cycle at mid-latitudes and the polar-reversal process at high-latitudes. Using multi-scale tracers of solar activity we examine the timing of these events in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is of the order of one solar rotation, but could be shorter. Utilizing uniquely comprehensive solar observations from the Solar Terrestrial Relations Observatory (STEREO), and Solar Dynamics Observatory (SDO) we see that this transitional event is strongly longitudinal in nature. Combined, these characteristics imply that magnetic information is communicated through the solar interior rapidly. A range of possibilities exist to explain such behavior: the presence of magnetic reconnection in the deep interior, internal gravity waves on the solar tachocline, or that the magnetic fields present in the Suns convection zone could be very large, with a poloidal field strengths reaching 50k - considerably larger than conventional explorations of solar and stellar dynamos estimate. Regardless of mechanism responsible, the rapid timescales demonstrated by the Suns global magnetic field reconfiguration present strong constraints on first-principles numerical simulations of the solar interior and, by extension, other stars.



rate research

Read More

98 - Chris Power 2016
Deep observations of galaxy outskirts reveal faint extended stellar components (ESCs) of streams, shells, and halos, which are ghostly remnants of the tidal disruption of satellite galaxies. We use cosmological galaxy formation simulations in Cold Dark Matter (CDM) and Warm Dark Matter (WDM) models to explore how the dark matter model influences the spatial, kinematic, and orbital properties of ESCs. These reveal that the spherically averaged stellar mass density at large galacto-centric radius can be depressed by up to a factor of 10 in WDM models relative to the CDM model, reflecting the anticipated suppressed abundance of satellite galaxies in WDM models. However, these differences are much smaller in WDM models that are compatible with observational limits, and are comparable in size to the system-to-system variation we find within the CDM model. This suggests that it will be challenging to place limits on dark matter using only the unresolved ESC.
We analyze observations from the Interface Region Imaging Spectrograph of the Mg II k line, the Mg II UV subordinate lines, and the O I 135.6 nm line to better understand the solar plage chromosphere. We also make comparisons with observations from the Swedish 1 m Solar Telescope of the H{alpha} line, the Ca II 8542 line, and Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the coronal 19.3 nm line. To understand the observed Mg II profiles, we compare these observations to the results of numerical experiments. The single-peaked or flat-topped Mg II k profiles found in plage imply a transition region at a high column mass and a hot and dense chromosphere of about 6500 K. This scenario is supported by the observed large-scale correlation between moss brightness and filled-in profiles with very little or absent self-reversal. The large wing width found in plage also implies a hot and dense chromosphere with a steep chromospheric temperature rise. The absence of emission in the Mg II subordinate lines constrain the chromospheric temperature and the height of the temperature rise while the width of the O I 135.6 nm line sets a limit to the non-thermal velocities to around 7 km/s.
130 - Wolfram Schroers 2005
This review focuses on the current status of lattice calculations of three observables which are both phenomenologically and experimentally relevant and have been scrutinized recently. These three observables are the nucleon electromagnetic form factors, the momentum fraction, <x>, and the nucleon axial coupling, gA.
In this paper we analyse tiebreak results from some tennis players in order to investigate whether we are able to identify some strategy in this crucial moment of the game. We compared the observed results with a binomial distribution considering that the probabilities of winning or losing a point are equal. Using a $chi^2$ test we found that, excepting some players, the greatest part of the results agrees with our hypothesis that there is no hidden strategy and the points in tiebreaks are merely aleatory.
NGC 4753 is a bright (M_V approx -22.3) lenticular galaxy. It is a very interesting target to test different theories of formation of lenticular galaxies, due to its low-density environment and complex structure. We perform the first comprehensive study of NGC 4753 globular cluster system (GCS), using Gemini/GMOS and CTIO/MosaicII images. Our results indicate a rather poor GCS of approx 1000 members. Its azimuthal distribution follows the shape of the galaxy bulge. The GC colour distribution is peculiar, presenting an intermediate subpopulation in addition to blue and red ones. This intermediate subgroup can be explained by a single stellar population with an age of 1.5-3 Gyr and 0.5-1 Z_o. The GC specific frequency S_N = 1.3+/-0.15 is surprisingly low for a galaxy of its class. The GC luminosity function (GCLF) is also peculiar, with an excess of bright GCs compared to the expected gaussian distribution. The underlying galaxy body has significant substructure, with remnants of spiral arms, dust filaments, and isophote twisting. This, and the fact that NGC 4753 hosted two type Ia SNe, support the possibility that the intermediate GC subpopulation may have originated during a recent merger, 1-3 Gyr ago.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا