Do you want to publish a course? Click here

Multiband superconductivity and possible nodal gap in RbCr$_{3}$As$_{3}$ revealed by Andreev reflection and single-particle tunneling measurements

118   0   0.0 ( 0 )
 Added by Huan Yang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

By measuring point-contact Andreev reflection (PCAR) spectra in the newly discovered chromium-based quasi-one-dimensional superconductor RbCr$_{3}$As$_{3}$, we find clear evidence of two superconducting components, i.e., one having a gap value of about 1.8 meV and another with a gap value of about 5 meV. Since the current injection may have components in both the direction parallel and perpendicular to the [(Cr$_{3}$As$_{3}$)$^{-}$]$_infty$ chains in the PCAR measurements, it naturally explains the two-component feature observed in this multi-band superconductor. Detailed analysis shows that the larger gap may have an $s$-wave nature. We then carry out the single-particle tunneling measurements based on a scanning tunneling spectroscope by using the needle-like sample as the tip, and in this case the measured current is mainly parallel to the [(Cr$_{3}$As$_{3}$)$^{-}$]$_infty$ chains. The single-particle tunneling spectra show only one gap feature with a gap value of about 1.8 meV. Fitting to the single particle tunneling spectra indicates that the gap should have a large anisotropy or even node(s). We argue that the absence of the larger gap may be related to the direction of the injecting current. Therefore, our combined experiments show the multiband superconductivity with one gap being nodal or highly anisotropic.



rate research

Read More

181 - M. Klanjsek , P. Jeglic , B. Lv 2010
We report a $^{23}$Na and $^{75}$As nuclear magnetic resonance (NMR) investigation of Na$_{x}$FeAs series ($x=1$, 0.9, 0.8) exhibiting a spin-density wave (SDW) order below $T_{rm SDW}=45$, 50 and 43 K for $x=1$, 0.9, 0.8, respectively, and a bulk superconductivity below $T_capprox 12$ K for x=0.9. Below $T_{rm SDW}$, a spin-lattice relaxation reveals the presence of gapless particle-hole excitations in the whole $x$ range, meaning that a portion of the Fermi surface remains gapless. The superconducting fraction as deduced from the bulk susceptibility scales with this portion, while the SDW order parameter as deduced from the NMR linewidth scales inversely with it. The NMR lineshape can only be reproduced assuming an incommensurate (IC) SDW. These findings qualitatively correspond to the mean-field models of competing interband magnetism and intraband superconductivity, which lead to an IC SDW order coexisting with superconductivity in part of the phase diagram.
Systematic studies of the NdFeAsOF superconducting energy gap via the point-contact Andreev-reflection (PCAR) spectroscopy are presented. The PCAR conductance spectra show at low temperatures a pair of gap-like peaks at about 4 - 7 mV indicating the superconducting energy gap and in most cases also a pair of humps at around 10 mV. Fits to the s-wave two-gap model of the PCAR conductance allowed to determine two superconducting energy gaps in the system. The energy-gap features however disappear already at T* = 15 to 20 K, much below the particular Tc of the junction under study. At T* a zero-bias conductance (ZBC) peak emerges, which at higher temperatures usually overwhelms the spectrum with intensity significantly higher than the conductance signal at lower temperatures. Possible causes of this unexpected temperature effect are discussed. In some cases the conductance spectra show just a reduced conductance around the zero-bias voltage, the effect persisting well above the bulk transition temperature. This indicates a presence of the pseudogap in the system.
162 - Chao Mu , Qiangwei Yin , Zhijun Tu 2021
We report $^{121/123}$Sb nuclear quadrupole resonance (NQR) and $^{51}$V nuclear magnetic resonance (NMR) measurements on kagome metal CsV$_3$Sb$_5$ with $T_{rm c}=2.5$ K. Both $^{51}$V NMR spectra and $^{121/123}$Sb NQR spectra split after a charge density wave (CDW) transition, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between $91$ K and $94$ K manifests that it is a first order phase transition. At low temperature, electric-field-gradient fluctuations diminish and magnetic fluctuations become dominant. Superconductivity emerges in the charge order state. Knight shift decreases and $1/T_{1}T$ shows a Hebel--Slichter coherence peak just below $T_{rm c}$, indicating that CsV$_3$Sb$_5$ is an s-wave superconductor.
The temperature, field, and field-orientation dependences of the electronic specific heat Ce of the ironpnictide superconductor KFe2As2 have been investigated. Thermodynamic evidence of the presence of line nodes is obtained from the T and $sqrt{H}$ linear dependences of Ce/T in the low-T and low-H region. Under a magnetic field rotated within the tetragonal ab plane, a fourfold oscillation is observed in Ce with a sign change at 0.08Tc. On the basis of the Doppler-shift analysis, the observed Ce minima in H // [100] at low T indicate the presence of line nodes somewhere on the Fermi surface where the Fermi velocity is parallel to the [100] direction; this is consistent with the octet-line-node scenario proposed recently by a photoemission experiment. In addition, the low-T Ce/T exhibits an unusual upturn on cooling at moderate fields only for H // ab, which is understood in terms of the strong Pauli paramagnetic effect on multiband superconductivity.
100 - A. F. Fang , R. Zhou , H. Tukada 2021
Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides. Here, we report nuclear magnetic resonance(NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms. The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth $lambda_L$. We find that $lambda_L$ saturates below $T sim 0.2$ $T_c$ in LiFeAs, where $T_c$ is the superconducting transition temperature, indicating nodeless superconducting gaps. Furthermore, by using a two-gaps model, we simulate the temperature dependence of $lambda_L$ and obtain the superconducting gaps of LiFeAs, as $Delta_1 = 1.2$ $k_B T_c$ and $Delta_2 = 2.8$ $k_B T_c$, in agreement with previous result from spin-lattice relaxation. For LiFeP, in contrast, the London penetration depth $lambda_L$ does not show any saturation down to $T sim 0.03 $ $T_c$, indicating nodes in the superconducting energy gap function. Finally, we demonstrate that the strong spin fluctuations with diffusive characteristics exist in LiFeP, as in some cuprate high temperature superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا