Do you want to publish a course? Click here

Skeins on Branes

46   0   0.0 ( 0 )
 Added by Vivek Shende
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We give a geometric interpretation of the coefficients of the HOMFLYPT polynomial of any link in the three-sphere as counts of holomorphic curves. The curves counted live in the resolved conifold where they have boundary on a shifted copy of the link conormal, as predicted by Ooguri and Vafa.. To prove this, we introduce a new method to define invariant counts of holomorphic curves with Lagrangian boundary: we show geometrically that the wall crossing associated to boundary bubbling is the framed skein relation. It then follows that counting holomorphic curves by the class of their boundary in the skein of the Lagrangian brane gives a deformation invariant curve count. This is a mathematically rigorous incarnation of the fact that boundaries of open topological strings create line defects in Chern-Simons theory, as described by Witten. The technical key to skein invariance is a new compactness result: if the Gromov limit of J-holomorphic immersions collapses a curve component, then its image has a singularity worse than a node.



rate research

Read More

The Thurston-Bennequin invariant provides one notion of self-linking for any homologically-trivial Legendrian curve in a contact three-manifold. Here we discuss related analytic notions of self-linking for Legendrian knots in Euclidean space. Our definition is based upon a reformulation of the elementary Gauss linking integral and is motivated by ideas from supersymmetric gauge theory. We recover the Thurston-Bennequin invariant as a special case.
We determine the skein-valued Gromov-Witten partition function for a single toric Lagrangian brane in $mathbb{C}^3$ or the resolved conifold. We first show geometrically they must satisfy a certain skein-theoretic recursion, and then solve this equation. The recursion is a skein-valued quantization of the equation of the mirror curve. The solution is the expected hook-content formula.
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of the primitive cohomologies of differential forms. We provide a general algorithm for computing the monodromies of the fibrations explicitly, which are needed to determine the primitive cohomologies. We also investigate a similar phenomenon coming from fibrations of a class of graph links, whose primitive cohomology provides information about the fibration structure.
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive forms and therefore lead directly to the construction of primitive cohomologies on symplectic manifolds. Using these operators, we introduce new primitive cohomologies that are analogous to the Dolbeault cohomology in the complex theory. Interestingly, the finiteness of these primitive cohomologies follows directly from an elliptic complex. We calculate the known primitive cohomologies on a nilmanifold and show that their dimensions can vary depending on the class of the symplectic form.
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differential elliptic complexes. Algebraically, we show that the filtered cohomologies give a two-sided resolution of Lefschetz maps, and thereby, they are directly related to the kernels and cokernels of the Lefschetz maps. We also introduce a novel, non-associative product operation on differential forms for symplectic manifolds. This product generates an A-infinity algebra structure on forms that underlies the filtered cohomologies and gives them a ring structure. As an application, we demonstrate how the ring structure of the filtered cohomologies can distinguish different symplectic four-manifolds in the context of a circle times a fibered three-manifold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا