We study the propagation of heavy quarks (HQs) in the quark-gluon plasma (QGP) by means of a relativistic Boltzmann transport (RBT) approach. The non-perturbative interaction between heavy quarks and light quarks is described by means of a quasi-particle approach able to describe simultaneously the experimental data for the nuclear suppression factor $R_{rm AA}$ and the elliptic flow $v_2(p_T)$ of D mesons from RHIC to LHC energies. In the same framework we predict the B meson nuclear modification factor at LHC. Finally, we discuss the relevance of initial state fluctuations that allows to extend the analysis to high order anisotropic flows $v_n(p_T)$ as well as to investigate the role of QCD interaction in developing correlations between the light and the heavy flavour anisotropic flows.
We introduce a framework called Heavy Quarkonium Quantum Dynamics (HQQD) which can be used to compute the dynamical suppression of heavy quarkonia propagating in the quark-gluon plasma using real-time in-medium quantum evolution. Using HQQD we compute large sets of real-time solutions to the Schr{o}dinger equation using a realistic in-medium complex-valued potential. We sample 2 million quarkonia wave packet trajectories and evolve them through the QGP using HQQD to obtain their survival probabilities. The computation is performed using three different HQQD model parameter sets in order to estimate our systematic uncertainty. After taking into account final state feed down we compare our results to existing experimental data for the suppression and elliptic flow of bottomonium states and find that HQQD predictions are good agreement with available data for $R_{AA}$ as a function of $N_{rm part}$ and $p_T$ collected at $sqrt{s_{rm NN}} =$ 5.02 TeV. In the case of $v_2$ for the various states, we find that the path-length dependence of $Upsilon(1s)$ suppression results in quite small $v_2$ for $Upsilon(1s)$. Our prediction for the integrated elliptic flow for $Upsilon(1s)$ in the $10{-}90$% centrality class, which now includes an estimate of the systematic error, is $v_2[Upsilon(1s)]$ = 0.003 $pm$ 0.0007 $pm,^{0.0006}_{0.0013}$. We also find that, due to their increased suppression, excited bottomonium states have a larger elliptic flow. Based on this observation we make predictions for $v_2[Upsilon(2s)]$ and $v_2[Upsilon(3s)]$ as a function of centrality and transverse momentum.
We evaluate drag and diffusion transport coefficients comparing a quasi-particle approximation with on-shell constituents of the QGP medium and a dynamical quasi-particles model with off-shell bulk medium at finite temperature T. We study the effects of the width $gamma$ of the particles of the bulk medium on the charm quark transport properties exploring the range where $gamma < M_{q,g}$. We find that off-shell effects are in general quite moderate and can induce a reduction of the drag coefficient at low momenta that disappear already at moderate momenta, $p gtrsim 2-3, rm GeV$. We also observe a moderate reduction of the breaking of the Fluctuation-Dissipation theorem (FDT) at finite momenta. Moreover, we have performed a first study of the dynamical evolution of HQ elastic energy loss in a bulk medium at fixed temperature extending the Boltzmann (BM) collision integral to include off-shell dynamics. A comparison among the Langevin dynamics, the BM collisional integral with on-shell and the BM extension to off-shell dynamics shows that the evolution of charm energy when off-shell effects are included remain quite similar to the case of the on-shell BM collision integral.
Measured 2nd and 4th azimuthal anisotropy coefficients v_{2,4}(N_{part}), p_T) are scaled with the initial eccentricity varepsilon_{2,4}(N_{part}) of the collision zone and studied as a function of the number of participants N_{part} and the transverse momenta p_T. Scaling violations are observed for $p_T alt 3$ GeV/c, consistent with a $p_T^2$ dependence of viscous corrections and a linear increase of the relaxation time with $p_T$. These empirical viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections exhibit a sharp maximum for $p_T agt 3$ GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.
In-medium properties of the low-lying strange, charm, and bottom baryons in symmetric nuclear matter are studied in the quark-meson coupling (QMC) model. Results for the Lorentz-scalar effective masses, mean field potentials felt by the light quarks in the baryons, in-medium bag radii, and the lowest mode bag eigenvalues are presented for those calculated using the updated data. This study completes the in-medium properties of the low-lying baryons in symmetric nuclear matter in the QMC model, for the strange, charm and bottom baryons which contain one or two strange, one charm or one bottom quarks, as well as at least one light quark. Highlight is the prediction of the bottom baryon Lorentz-scalar effective masses, namely, the Lorentz-scalar effective mass of $Sigma_b$ becomes smaller than that of $Xi_b$ at moderate nuclear matter density, $m^*_{Sigma_b} < m^*_{Xi_b}$, although in vacuum $m_{Sigma_b} > m_{Xi_b}$. We study further the effects of the repulsive Lorentz-vector potentials on the excitation (total) energies of these bottom baryons.
We compute the suppression and elliptic flow of bottomonium using real-time solutions to the Schr{o}dinger equation with a realistic in-medium complex-valued potential. To model the initial production, we assume that, in the limit of heavy quark masses, the wave-function can be described by a lattice-smeared (Gaussian) Dirac delta wave-function. The resulting final-state quantum-mechanical overlaps provide the survival probability of all bottomonium eigenstates. Our results are in good agreement with available data for $R_{AA}$ as a function of $N_{rm part}$ and $p_T$ collected at $sqrt{s_{rm NN}} =$ 5.02 TeV. In the case of $v_2$ for the various states, we find that the path-length dependence of $Upsilon(1s)$ suppression results in quite small $v_2$ for $Upsilon(1s)$. Our prediction for the integrated elliptic flow for $Upsilon(1s)$ in the $10{-}90$% centrality class is $v_2[Upsilon(1s)] = 0.0026 pm 0.0007$. We additionally find that, due to their increased suppression, excited bottomonium states have a larger elliptic flow and we make predictions for $v_2[Upsilon(2s)]$ and $v_2[Upsilon(3s)]$ as a function of centrality and transverse momentum. Similar to prior studies, we find that it is possible for bottomonium states to have negative $v_2$ at low transverse momentum.
S. Plumari
,G. Coci
,S.K. Das
.
(2019)
.
"Transport properties from Charm to Bottom: $p_T$ suppression, anisotropic flow $v_n$ and their correlations to the bulk dynamics"
.
Salvatore Plumari Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا