Do you want to publish a course? Click here

Impurity-potential-induced gap at the Dirac point of topological insulators with in-plane magnetization

57   0   0.0 ( 0 )
 Added by Md Islam
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum anomalous Hall effect (QAHE), characterized by dissipationless quantized edge transport, relies crucially on a non-trivial topology of the electronic bulk bandstructure and a robust ferromagnetic order that breaks time-reversal symmetry. Magnetically-doped topological insulators (TIs) satisfy both these criteria, and are the most promising quantum materials for realizing the QAHE. Because the spin of the surface electrons aligns along the direction of magnetic-impurity exchange field, only magnetic TIs with an out-of-plane magnetization are thought to open a gap at the Dirac point (DP) of the surface states, resulting in the QAHE. Using a continuum model supported by atomistic tight-binding and first-principles calculations of transition-metal doped Bi$_2$Se$_3$, we show that a surface-impurity potential generates an additional effective magnetic field which spin-polarizes the surface electrons along the direction perpendicular to the surface. The predicted gap-opening mechanism results from the interplay of this additional field and the in-plane magnetization that shifts the position of the DP away from the $Gamma$ point. This effect is similar to the one originating from the hexagonal warping correction of the bandstructure but is one order of magnitude stronger. Our calculations show that in a doped TI with in-plane magnetization the impurity-potential-induced gap at the DP is comparable to the one opened by an out-of-plane magnetization.

rate research

Read More

Topological insulators are novel macroscopic quantum-mechanical phase of matter, which hold promise for realizing some of the most exotic particles in physics as well as application towards spintronics and quantum computation. In all the known topological insulators, strong spin-orbit coupling is critical for the generation of the protected massless surface states. Consequently, a complete description of the Dirac state should include both the spin and orbital (spatial) parts of the wavefunction. For the family of materials with a single Dirac cone, theories and experiments agree qualitatively, showing the topological state has a chiral spin texture that changes handedness across the Dirac point (DP), but they differ quantitatively on how the spin is polarized. Limited existing theoretical ideas predict chiral local orbital angular momentum on the two sides of the DP. However, there have been neither direct measurements nor calculations identifying the global symmetry of the spatial wavefunction. Here we present the first results from angle-resolved photoemission experiment and first-principles calculation that both show, counter to current predictions, the in-plane orbital wavefunctions for the surface states of Bi2Se3 are asymmetric relative to the DP, switching from being tangential to the k-space constant energy surfaces above DP, to being radial to them below the DP. Because the orbital texture switch occurs exactly at the DP this effect should be intrinsic to the topological physics, constituting an essential yet missing aspect in the description of the topological Dirac state. Our results also indicate that the spin texture may be more complex than previously reported, helping to reconcile earlier conflicting spin resolved measurements.
Quantum mechanics postulates that any measurement influences the state of the investigated system. Here, by means of angle-, spin-, and time-resolved photoemission experiments and ab initio calculations we demonstrate how non-equal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine topological insulators (TIs) created by a photoexcitation by linearly polarized synchrotron radiation (SR) is followed by the hole-generated uncompensated spin accumulation and the SR-induced magnetization via the spin-torque effect. We show that the photoexcitation of the DC is asymmetric, that it varies with the photon energy, and that it practically does not change during the relaxation. We find a relation between the photoexcitation asymmetry, the generated spin accumulation and the induced spin polarization of the DC and V 3d states. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the $k_{parallel}$-shift of the DC position and by the splitting of the states at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results.
Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provides quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point but all attempts to observe it directly have been unsuccessful. The gap size is considered crucial to overcoming the present limitations of the QAHE, which so far occurs only at temperatures one to two orders of magnitude below its principle limit set by the ferromagnetic Curie temperature $T_C$. Here, we use low temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi$_2$Te$_3$ films, which is present only below $T_C$. Surprisingly, the gap turns out to be $sim$90 meV wide, which not only exceeds $k_BT$ at room temperature but is also 5 times larger than predicted by density functional theory. By an exhaustive multiscale structure characterization we show that this enhancement is due to a remarkable structure modification induced by Mn doping. Instead of a disordered impurity system, it forms an alternating sequence of septuple and quintuple layer blocks, where Mn is predominantly incorporated in the septuple layers. This self-organized heterostructure substantially enhances the wave-function overlap and the size of the magnetic gap at the Dirac point, as recently predicted. Mn-doped Bi$_2$Se$_3$ forms a similar heterostructure, however, only a large, nonmagnetic gap is formed. We explain both differences based on the higher spin-orbit interaction in Bi$_2$Te$_3$ with the most important consequence of a magnetic anisotropy perpendicular to the films, whereas for Bi$_2$Se$_3$ the spin-orbit interaction it is too weak to overcome the dipole-dipole interaction. Our findings provide crucial insights for pushing the lossless transport properties of topological insulators towards room-temperature applications.
Sub-angstrom Co coverage, being deposited on BiSbTeSe2(0001) surface at 200-330 C, opens a band gap at the Dirac point, with the shift of the Dirac point position caused by RT adsorbate pre-deposition. Temperature dependent measurements in 15-150 K range have shown no band gap width change. This fact indicates the nonmagnetic nature of the gap which may be attributed to the chemical hybridization of surface states upon the introduction of Co adatoms, which decrease crystallographic symmetry and eliminate topological protection of the surface states.
Topologically-protected surface states present rich physics and promising spintronic, optoelectronic and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons with TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically-protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا