Do you want to publish a course? Click here

Optimizing the accuracy and efficiency of optical turbulence profiling using adaptive optics telemetry for extremely large telescopes

56   0   0.0 ( 0 )
 Added by Douglas Laidlaw
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Advanced adaptive optics (AO) instruments on ground-based telescopes require accurate knowledge of the atmospheric turbulence strength as a function of altitude. This information assists point spread function reconstruction, AO temporal control techniques and is required by wide-field AO systems to optimize the reconstruction of an observed wavefront. The variability of the atmosphere makes it important to have a measure of the optical turbulence profile in real time. This measurement can be performed by fitting an analytically generated covariance matrix to the cross-covariance of Shack-Hartmann wavefront sensor (SHWFS) centroids. In this study we explore the benefits of reducing cross-covariance data points to a covariance map region of interest (ROI). A technique for using the covariance map ROI to measure and compensate for SHWFS misalignments is also introduced. We compare the accuracy of covariance matrix and map ROI optical turbulence profiling using both simulated and on-sky data from CANARY, an AO demonstrator on the 4.2 m William Herschel telescope, La Palma. On-sky CANARY results are compared to contemporaneous profiles from Stereo-SCIDAR - a dedicated high-resolution optical turbulence profiler. It is shown that the covariance map ROI optimizes the accuracy of AO telemetry optical turbulence profiling. In addition, we show that the covariance map ROI reduces the fitting time for an extremely large telescope-scale system by a factor of 72. The software package we developed to collect all of the presented results is now open source.



rate research

Read More

Closed-loop adaptive optics systems which use minimum mean square error wavefront reconstruction require the computation of pseudo open loop wavefront slopes. These techniques incorporate a knowledge of atmospheric statistics which must therefore be represented within the wavefront slope measurements. These pseudo open loop slopes are computed from the sum of the measured residual slopes and the reconstructed slopes that would be given if the deformable mirror was flat, generally involving the multiplication of an interaction matrix with actuator demands from the previous time-step. When using dense algebra, this multiplication is computationally expensive for Extremely Large Telescopes, requiring a large memory bandwidth. Here we show that this requirement can be significantly reduced, maintaining mathematical correctness and significantly reducing system complexity. This therefore reduces the cost of these systems and increases robustness and reliability.
(35-words maximum) In this talk I present the scientific drivers related to the optical turbulence forecast applied to the ground-based astronomy supported by Adaptive Optics, the state of the art of the achieved results and the most relevant challenges for future progresses.
Knowledge of the Earths atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time and isoplanatic angle, but for more sophisticated systems such as wide field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR is a technique specifically designed to characterise the Earths atmospheric turbulence with high altitude resolution and high sensitivity. Together with ESO, Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20~km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64 with 50% of the turbulence confined to an altitude below 2 km and 40% below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75 respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer SLODAR, MASS-DIMM and the ECMWF weather forecast model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).
171 - Kieran Leschinski 2020
AnisoCADO is a Python package for generating images of the point spread function (PSF) for the european extremely large telescope (ELT). The code allows the user to set many of the most important atmospheric and observational parameters that influence the shape and strehl ratio of the resulting PSF, including but not limited to: the atmospheric turbulence profile, the guide star position for a single conjugate adaptive optics (SCAO) solution, differential telescope pupil transmission, etc. Documentation can be found at https://anisocado.readthedocs.io/en/latest/
136 - Alastair Basden 2015
The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-conjugate adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, number of deformable mirrors, mirror conjugation and actuator pitch. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost. We conclude that a 6 laser guide star system using 3 DMs seems to be a sweet spot for performance and cost compromise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا