No Arabic abstract
Knowledge of the Earths atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time and isoplanatic angle, but for more sophisticated systems such as wide field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR is a technique specifically designed to characterise the Earths atmospheric turbulence with high altitude resolution and high sensitivity. Together with ESO, Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20~km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64 with 50% of the turbulence confined to an altitude below 2 km and 40% below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75 respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer SLODAR, MASS-DIMM and the ECMWF weather forecast model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).
As telescopes become larger, into the era of ~40 m Extremely Large Telescopes, the high- resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo- SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.
We present the largest database so far of atmospheric optical-turbulence profiles (197035 individual CN2(h)) for an astronomical site, the Roque de los Muchachos Observatory (La Palma, Spain). This C2 (h) database was obtained through generalized-SCIDAR observations at the 1 meter Jacobus Kapteyn telescope from Febrary 2004 to August 2009, obtaining useful data for 211 nights. The overestimation of the turbulence strength induced during the generalized SCIDAR data processing has been analyzed for the different observational configurations. All the individual C2 (h) have been recalibrated to compensate the introduced errors during data treatment following (Avila & Cuevas 2009). Comparing results from profiles before and after the recalibration, we analyze its impact on the calculation of relevant parameters for adaptive optics.
Advanced adaptive optics (AO) instruments on ground-based telescopes require accurate knowledge of the atmospheric turbulence strength as a function of altitude. This information assists point spread function reconstruction, AO temporal control techniques and is required by wide-field AO systems to optimize the reconstruction of an observed wavefront. The variability of the atmosphere makes it important to have a measure of the optical turbulence profile in real time. This measurement can be performed by fitting an analytically generated covariance matrix to the cross-covariance of Shack-Hartmann wavefront sensor (SHWFS) centroids. In this study we explore the benefits of reducing cross-covariance data points to a covariance map region of interest (ROI). A technique for using the covariance map ROI to measure and compensate for SHWFS misalignments is also introduced. We compare the accuracy of covariance matrix and map ROI optical turbulence profiling using both simulated and on-sky data from CANARY, an AO demonstrator on the 4.2 m William Herschel telescope, La Palma. On-sky CANARY results are compared to contemporaneous profiles from Stereo-SCIDAR - a dedicated high-resolution optical turbulence profiler. It is shown that the covariance map ROI optimizes the accuracy of AO telemetry optical turbulence profiling. In addition, we show that the covariance map ROI reduces the fitting time for an extremely large telescope-scale system by a factor of 72. The software package we developed to collect all of the presented results is now open source.
Adaptive optics (AO) systems using tomographic estimation of three-dimensional structure of atmospheric turbulence requires vertical atmospheric turbulence profile, which describes turbulence strength as a function of altitude as a prior information. We propose a novel method to reconstruct the profile by applying Multi Aperture Scintillation Sensor (MASS) method to scintillation data obtained by a Shack-Hartmann wavefront sensor (SH-WFS). Compared to the traditional MASS, which uses atmospheric scintillation within 4 concentric annular apertures, the new method utilizes scintillation in several hundreds of spatial patterns, which are created by combinations of SH-WFS subapertures. Accuracy of the turbulence profile reconstruction is evaluated with Bayesian inference, and it is confirmed that turbulence profile with more than 10 layers can be reconstructed thanks to the large number of constraints. We demonstrate the new method with a SH-WFS attached to the 50 cm telescope at Tohoku university and confirm that general characteristics of atmospheric turbulence profile is reproduced.
A Single Star Scidar system(SSS) has been developed for remotely sensing atmospheric turbulence profiles. The SSS consists of computing the spatial auto/cross-correlation functions of short exposure images of the scintillation patterns produced by a single star, and provides the vertical profiles of optical turbulence intensity C2n(h) and wind speed V(h). The SSS needs only a 40 cm aperture telescope, so that can be portable and equipped easily to field candidate sites. Some experiments for the SSS have been made in Beijing last year, successfully retrieving atmospheric turbulence and wind profiles from the ground to 30 km. The SSS observations has recently been made at the Xinglong station of NAOC, characterizing atmospheric parameters at this station. We plan to automatize SSS instrument and run remote observation via internet; a more friendly auto-SSS system will be set up and make use at the candidate sites in Tibet and Dome A.