Do you want to publish a course? Click here

Generalized multi-scale Young measures

107   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to the construction of generalized multi-scale Young measures, which are the extension of Pedregals multi-scale Young measures [Trans. Amer. Math. Soc. 358 (2006), pp. 591-602] to the setting of generalized Young measures introduced by DiPerna and Majda [Comm. Math. Phys. 108 (1987), pp. 667-689]. As a tool for variational problems, these are well-suited objects for the study (at different length-scales) of oscillation and concentration effects of convergent sequences of measures. Important properties of multi-scale Young measures such as compactness, representation of non-linear compositions, localization principles, and differential constraints are extensively developed in the second part of this paper. As an application, we use this framework to address the $Gamma$-limit characterization of the homogenized limit of convex integrals defined on spaces of measures satisfying a general linear PDE constraint.



rate research

Read More

We give two characterizations, one for the class of generalized Young measures generated by $mathcal A$-free measures, and one for the class generated by $mathcal B$-gradient measures $mathcal Bu$. Here, $mathcal A$ and $mathcal B$ are linear homogeneous operators of arbitrary order, which we assume satisfy the constant rank property. The characterization places the class of generalized $mathcal A$-free Young measures in duality with the class of $mathcal A$-quasiconvex integrands by means of a well-known Hahn--Banach separation property. A similar statement holds for generalized $mathcal B$-gradient Young measures. Concerning applications, we discuss several examples that showcase the rigidity or the failure of $mathrm{L}^1$-compensated compactness when concentration of mass is allowed. These include the failure of $mathrm{L}^1$-estimates for elliptic systems and the failure of $mathrm{L}^1$-rigidity for the two-state problem. As a byproduct of our techniques we also show that, for any bounded open set $Omega$, the inclusions [ mathrm{L}^1(Omega) cap ker mathcal A hookrightarrow mathcal M(Omega) cap ker mathcal A, ] [ {mathcal B uin mathrm{C}^infty(Omega)} hookrightarrow {mathcal B uin mathcal M(Omega)}, ] are dense with respect to area-functional convergence of measures
We study mean value properties of harmonic functions in metric measure spaces. The metric measure spaces we consider have a doubling measure and support a (1,1)- Poincare inequality. The notion of harmonicity is based on the Dirichlet form defined in terms of a Cheeger differentiable structure. By studying fine properties of the Green function on balls, we characterize harmonic functions in terms of a mean value property. As a consequence, we obtain a detailed description of Poisson kernels. We shall also obtain a Gauss-Green type formula for sets of finite perimeter which posses a Minkowski content characterization of the perimeter. For the Gauss-Green formula we introduce a suitable notion of the interior normal trace of a regular ball.
We study the multi-scale description of large-time collective behavior of agents driven by alignment. The resulting multi-flock dynamics arises naturally with realistic initial configurations consisting of multiple spatial scaling, which in turn peak at different time scales. We derive a `master-equation which describes a complex multi-flock congregations governed by two ingredients: (i) a fast inner-flock communication; and (ii) a slow(-er) inter-flock communication. The latter is driven by macroscopic observables which feature the up-scaling of the problem. We extend the current mono-flock theory, proving a series of results which describe rates of multi-flocking with natural dependencies on communication strengths. Both agent-based, kinetic, and hydrodynamic descriptions are considered, with particular emphasis placed on the discrete and macroscopic descriptions.
We consider the variational problem consisting of minimizing a polyconvex integrand for maps between manifolds. We offer a simple and direct proof of the existence of a minimizing map. The proof is based on Young measures.
Many science phenomena are described as interacting particle systems (IPS). The mean field limit (MFL) of large all-to-all coupled deterministic IPS is given by the solution of a PDE, the Vlasov Equation (VE). Yet, many applications demand IPS coupled on networks/graphs. In this paper, we are interested in IPS on directed graphs, or digraphs for short. It is interesting to know, how the limit of a sequence of digraphs associated with the IPS influences the macroscopic MFL of the IPS. This paper studies VEs on a generalized digraph, regarded as limit of a sequence of digraphs, which we refer to as a digraph measure (DGM) to emphasize that we work with its limit via measures. We provide (i) unique existence of solutions of the VE on continuous DGMs, and (ii) discretization of the solution of the VE by empirical distributions supported on solutions of an IPS via ODEs coupled on a sequence of digraphs converging to the given DGM. The result substantially extends results on one-dimensional Kuramoto-type models and we allow the underlying digraphs to be not necessarily dense. The technical contribution of this paper is a generalization of Neunzerts in-cell-particle approach from a measure-theoretic viewpoint, which is different from the known techniques in $L^p$-functions using graphons and their generalization via harmonic analysis of locally compact Abelian groups. Finally, we apply our results to various models in higher-dimensional Euclidean spaces in epidemiology, ecology, and social sciences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا