No Arabic abstract
Aims. The goal of the paper is to present a detailed study of the propagation of low velocity (5 to 25 km s-1) stationary molecular shocks in environments illuminated by an external ultraviolet (UV) radiation field. In particular, we intend to show how the structure, dynamics, energetics, and chemical properties of shocks are modified by UV photons and to estimate how efficiently shocks can produce line emission. Methods. We implemented several key physico-chemical processes in the Paris-Durham shock code to improve the treatment of the radiative transfer and its impact on dust and gas particles. We propose a new integration algorithm to find the steady-state solutions of magnetohydrodynamics equations in a range of parameters in which the fluid evolves from a supersonic to a subsonic regime. We explored the resulting code over a wide range of physical conditions, which encompass diffuse interstellar clouds and hot and dense photon-dominated regions (PDR). Results. We find that C-type shock conditions cease to exist as soon as G0 > 0.2 (nH/cm-3)^1/2. Such conditions trigger the emergence of another category of stationary solutions, called C*-type and CJ-type shocks, in which the shocked gas is momentarily subsonic along its trajectory. These solutions are shown to be unique for a given set of physical conditions and correspond to dissipative structures in which the gas is heated up to temperatures comprised between those found in C-type and adiabatic J-type shocks. High temperatures combined with the ambient UV field favour the production or excitation of a few molecular species to the detriment of others, hence leading to specific spectroscopic tracers such as rovibrational lines of H2 and rotational lines of CH+. Unexpectedly, the rotational lines of CH+ may carry as much as several percent of the shock kinetic energy.
We examine the chemical and emission properties of mildly irradiated (G0=1) magnetised shocks in diffuse media (nH=10^2 to 10^4 /cm3) at low to moderate velocities (from 3 to 40 km/s). Results: The formation of some molecules relies on endoergic reactions. In J-shocks, their abundances are enhanced by several orders of magnitude for shock velocities as low as 7 km/s. Otherwise most chemical properties of J-type shocks vary over less than an order of magnitude between velocities from about 7 to about 30 km/s, where H2 dissociation sets in. C-type shocks display a more gradual molecular enhancement as the shock velocity increases. We quantify the energy flux budget (fluxes of kinetic, radiated and magnetic energies) with emphasis on the main cooling lines of the cold interstellar medium. Their sensitivity to shock velocity is such that it allows observations to constrain statistical distributions of shock velocities. We fit various probability distribution functions (PDFs) of shock velocities to spectroscopic observations of the galaxy-wide shock in Stephans Quintet (SQ) and of a Galactic line of sight sampling diffuse molecular gas in Chamaeleon. In both cases, low velocities bear the greatest statistical weight and the PDF is consistent with a bimodal distribution. In the very low velocity shocks (below 5 km/s), dissipation is due to ion-neutral friction which powers H2 low energy transitions and atomic lines. In moderate velocity shocks (20 km/s and above), the dissipation is due to viscous heating and accounts for most of the molecular emission. In our interpretation a significant fraction of the gas on the line of sight is shocked (from 4% to 66%). For example, C+ emission may trace shocks in UV irradiated gas where C+ is the dominant carbon species.
Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecular clouds, and the fast-moving, dense gas with compressed magnetic fields is associated with enhanced cosmic rays. This paper presents new theoretical modeling, using the Paris-Durham shock model, and new observations, using the Stratospheric Observatory for Infrared Astronomy (SOFIA), of the H$_2$ S(5) pure rotational line from molecular shocks in the supernova remnant IC443. We generate MHD models for non-steady-state shocks driven by the pressure of the IC443 blast wave into gas of densities $10^3$ to $10^5$ cm$^{-3}$. We present the first detailed derivation of the shape of the velocity profile for emission from H$_2$ lines behind such shocks, taking into account the shock age, preshock density, and magnetic field. For preshock densities $10^3$-$10^5$ cm$^{-3}$, the the predicted shifts of line centers, and the line widths, of the H$_2$ lines range from 20-2, and 30-4 km/s, respectively. The a priori models are compared to the observed line profiles, showing that clumps C and G can be explained by shocks into gas with density 10$^3$ to $2times 10^4$ cm$^{-3}$ and strong magnetic fields. For clump B2 (a fainter region near clump B), the H$_2$ spectrum requires a J-type shock into moderate density (~100 cm$^{-3}$) with the gas accelerated to 100 km/s from its pre-shock location. Clump B1 requires both a magnetic-dominated C-type shock (like for clumps C and G) and a J-type shock (like for clump B1) to explain the highest observed velocities. The J-type shocks that produce high-velocity molecules may be locations where the magnetic field is nearly parallel to the shock velocity, which makes it impossible for a C-type shock (with ions and neutrals separated) to form.
The isocyanic acid (HNCO) presents an extended distribution in the centers of the Milky Way and the spiral galaxy IC342. Based on the morphology of the emission and the HNCO abundance with respect to H2, several authors made the hypothesis that HNCO could be a good tracer of interstellar shocks. Here we test this hypothesis by observing a well-known Galactic source where the chemistry is dominated by shocks. We have observed several transitions of HNCO towards L1157-mm and two positions (B1 and B2) in the blue lobe of the molecular outflow. The HNCO line profiles exhibit the same characteristics of other well-known shock tracers like CH3OH, H2CO, SO or SO2. HNCO, together with SO2 and OCS, are the only three molecules detected so far whose emission is much more intense in B2 than in B1, making these species valuable probes of chemical differences along the outflow. The HNCO abundance with respect to H2 is 0.4-1.8 10^-8 in B1 and 0.3-1 10^-7 in B2. These abundances are the highest ever measured, and imply an increment with respect to L1157-mm of a factor up to 83, demonstrating that this molecule is actually a good shock tracer. Our results probe that shocks can actually produce the HNCO abundance measured in galactic nuclei and even higher ones. We propose that the gas phase abundance of HNCO is due both to grain mantles erosion by the shock waves and by neutral-neutral reactions in gas phase involving CN and O2. The observed anticorrelation of CN and HNCO fluxes supports this scenario. The observed similarities of the HNCO emission and the sulfured molecules may arise due to formation pathways involving also O2.
Recent observations near the Galactic Centre have found several molecular filaments displaying striking helically-wound morphology, which are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfv{e}n waves, we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing molecular tornado structure. The models are compared to the Ostriker solution for isothermal, non-magnetic, non-rotating filaments. We find that neither the analytic model nor the Alfv{e}n wave model suffer from unphysical density
We build detailed composite models of photoionization and shock ionization based on the SUMA code to reproduce emission lines emitted from the Narrow Line Regions (NLR) of Seyfert 2 nuclei. The aim of this work is to investigate diagram AGN positions according to shock parameters, shock effects on the gas temperature and ionization structures and derive a semi-empirical abundance calibration based on emission-line ratios little sensitive to the shock presence. The models were used to reproduce optical (3000 < A < 7000) emission line intensities of 244 local (z < 0.4) Seyfert 2s, whose observational data were selected from Sloan Digital Sky Survey DR7. Our models suggest that shocks in Seyfert 2 nuclei have velocities in the range of 50-300 km/s and imply a narrower metallicity range (0.6 < (Z/Z) < 1.6) than those derived using pure photoionization models. Our results indicate that shock velocity in AGNs can not be estimated using standard optical line ratio diagrams, based on integrated spectra. Our models predict a different temperature structure and O+/O and O2+/O fractional abundances throughout the NLR clouds than those derived from pure photoionization models, mainly in shock-dominated objects. This suggests that, in order to minimize the shock effects, the combination of emission-lines emitted by ions with similar intermediate ionization potential could be good metallicity indicators. Finally, we derive two calibrations between the N/O abundance ratio and the N2O2=log([N II]6584/[O II]3727) and N2=log([N II]6584/H{alpha}) indexes which agree with that derived from pure photoionization models.