High precision spectroscopy of the $^1S_0$-to-${^1}D_2$ clock transition of $^{176}$Lu is reported. Measurements are performed with Hertz level precision with the accuracy of the hyperfine-averaged frequency limited by the calibration of an active hydrogen maser to the SI definition of the second via a GPS link. The measurements also provide accurate determination of the $^1D_2$ hyperfine structure. Hyperfine structure constants associated with the magnetic octupole and electric hexadecapole moments of the nucleus are considered, which includes a derivation of correction terms from third-order perturbation theory.
We measure the differential polarizability of the $^{176}$Lu$^+$ $^1S_0$ -to- ${^3}D_1$ clock transition at multiple wavelengths. This experimentally characterizes the differential dynamic polarizability for frequencies up to 372 THz and allows an experimental determination of the dynamic correction to the blackbody radiation shift for the clock transition. In addition, measurements at the near resonant wavelengths of 598 and 646 nm determine the two dominant contributions to the differential dynamic polarizability below 372 THz. These additional measurements are carried out by two independent methods to verify the validity of our methodology. We also carry out a theoretical calculation of the polarizabilities using the hybrid method that combines the configuration interaction (CI) and the coupled-cluster approaches, incorporating for the first time quadratic non-linear terms and partial triple excitations in the coupled-cluster calculations. The experimental measurements of the $|langle ^3D_1|| r || ^3P_Jrangle|$ matrix elements provide high-precision benchmarks for this theoretical approach.
We consider hyperfine-mediated effects for clock transitions in $^{176}$Lu$^+$. Mixing of fine structure levels due to the hyperfine interaction bring about modifications to Lande $g$-factors and the quadrupole moment for a given state. Explicit expressions are derived for both $g$-factor and quadrupole corrections, for which leading order terms arise from the nuclear magnetic dipole coupling. High accuracy measurements of the $g$-factors for the $^1S_0$ and $^3D_1$ hyperfine levels are carried out, which provide an experimental determination of the leading order correction terms.
We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the hyperfine intervals of the $^3$D$_1$ to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6) THz. The lifetime of the $^3$D$_1$ state is inferred to be $174^{+23}_{-32}$ hours from the M1 coupling strength.
Precision saturation spectroscopy of the $^{88}{rm Sr} ^1S_0-^3P_1$ is performed in a vapor cell filled with various rare gas including He, Ne, Ar, and Xe. By continuously calibrating the absolute frequency of the probe laser, buffer gas induced collision shifts of $sim $kHz are detected with gas pressure of 1-20 mTorr. Helium gave the largest fractional shift of $1.6 times 10^{-9} {rm Torr}^{-1}$. Comparing with a simple impact calculation and a Doppler-limited experiment of Holtgrave and Wolf [Phys. Rev. A {bf 72}, 012711 (2005)], our results show larger broadening and smaller shifting coefficient, indicating effective atomic loss due to velocity changing collisions. The applicability of the result to the $^1S_0-^3P_0$ optical lattice clock transition is also discussed.
Hyperfine induced $1s2s ^1S_0 to 1s^2 ^1S_0$ M1 transition probabilities of He-like ions have been calculated from relativistic configuration interaction wavefunctions including the frequency independent Breit interaction and QED effects. Present results for {$^{151}$}Eu and {$^{155}$}Gd are in good agreement with previous calculations [Phys. Rev. A {bf 63}, 054105 (2001)]. Electronic data are given in terms of a general scaling law in $Z$ that, given isotopic nuclear spin and magnetic moment, allows hyperfine induced decay rates to be estimated for any isotope. The results should be helpful for future experimental investigations on QED and parity non-conservation effects.