Do you want to publish a course? Click here

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

134   0   0.0 ( 0 )
 Added by Aaron Sharpe
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

When two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here we present evidence that near three-quarters ($3/4$) filling of the conduction miniband these enhanced interactions drive the twisted bilayer graphene into a ferromagnetic state. We observe emergent ferromagnetic hysteresis, with a giant anomalous Hall (AH) effect as large as $10.4 mathrm{kOmega}$ and signs of chiral edge states in a narrow density range around an apparent insulating state at $3/4$. Surprisingly, the magnetization of the sample can be reversed by applying a small DC current. Although the AH resistance is not quantized and dissipation is significant, we suggest that the system is an incipient Chern insulator.



rate research

Read More

In bilayer graphene rotationally faulted to theta=1.1 degrees, interlayer tunneling and rotational misalignment conspire to create a pair of low energy flat band that have been found to host various correlated phenomena at partial filling. Most work to date has focused on the zero magnetic field phase diagram, with magnetic field (B) used as a probe of the B=0 band structure. Here, we show that twisted bilayer graphene (tBLG) in a B as low as 2T hosts a cascade of ferromagnetic Chern insulators with Chern number |C|=1,2 and 3. We argue that the emergence of the Chern insulators is driven by the interplay of the moire superlattice with the B, which endow the flat bands with a substructure of topologically nontrivial subbands characteristic of the Hofstadter butterfly. The new phases can be accounted for in a Stoner picture in which exchange interactions favor polarization into one or more spin- and valley-isospin flavors; in contrast to conventional quantum Hall ferromagnets, however, electrons polarize into between one and four copies of a single Hofstadter subband with Chern number C=-1. In the case of the C=pm3 insulators in particular, B catalyzes a first order phase transition from the spin- and valley-unpolarized B=0 state into the ferromagnetic state. Distinct from other moire heterostructures, tBLG realizes the strong-lattice limit of the Hofstadter problem and hosts Coulomb interactions that are comparable to the full bandwidth W and are consequently much stronger than the width of the individual Hofstadter subbands. In our experimental data, the dominance of Coulomb interactions manifests through the appearance of Chern insulating states with spontaneously broken superlattice symmetry at half filling of a C=-2 subband. Our experiments show that that tBLG may be an ideal venue to explore the strong interaction limit within partially filled Hofstadter bands.
Strong electron correlation and spin-orbit coupling (SOC) provide two non-trivial threads to condensed matter physics. When these two strands of physics come together, a plethora of quantum phenomena with novel topological order have been predicted to emerge in the correlated SOC regime. In this work, we examine the combined influence of electron correlation and SOC on a 2-dimensional (2D) electronic system at the atomic interface between magic-angle twisted bilayer graphene (tBLG) and a tungsten diselenide (WSe) crystal. In such a structure, strong electron correlation within the moire flatband stabilizes correlated insulating states at both quarter and half-filling, whereas SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior. The coupling between spin and valley degrees of freedom is unambiguously demonstrated as the magnetic order is shown to be tunable with an in-plane magnetic field, or a perpendicular electric field. In addition, we examine the influence of SOC on the isospin order and stability of superconductivity. Our findings establish an efficient experimental knob to engineer topological properties of moire bands in twisted bilayer graphene and related systems.
111 - Q. K. Tang , L. Yang , D. Wang 2018
We investigate the twisted bilayer graphene by a two-orbital Hubbard model on the honeycomb lattice. The model is studied near 1/4 band filling by using the singular-mode functional renormalization group theory. Spin-triplet $f$-wave pairing is found from weak to moderate coupling limit of the local interactions, and is associated with the Hunds rule coupling and incommensurate spin fluctuations at moderate momenta.
Twisted bilayer graphene with a twist angle of around 1.1{deg} features a pair of isolated flat electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling microscopy to probe local properties of highly tunable twisted bilayer graphene devices and show that the flat bands strongly deform when aligned with the Fermi level. At half filling of the bands, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring a substantially enhanced flat band splitting that we describe within a microscopic model predicting a strong tendency towards nematic ordering. Our results provide insights into symmetry breaking correlation effects and highlight the importance of electronic interactions for all filling factors in twisted bilayer graphene.
Twisted graphene bilayers (TGBs) have low-energy van Hove singularities (VHSs) that are strongly localized around AA-stacked regions of the moire pattern. Therefore, they exhibit novel many-body electronic states, such as Mott-like insulator and unconventional superconductivity. Unfortunately, these strongly correlated states were only observed in magic angle TGBs with the twist angle theta~1.1{deg}, requiring a precisely tuned structure. Is it possible to realize exotic quantum phases in the TGBs not limited at the magic angle? Here we studied electronic properties of a TGB with theta~1.64{deg} and demonstrated that a VHS splits into two spin-polarized states flanking the Fermi energy when the VHS is close to the Fermi level. Such a result indicates that localized magnetic moments emerge in the AA-stacked regions of the TGB. Since the low-energy VHSs are quite easy to be reached in slightly TGBs, our result therefore provides a facile direction to realize novel quantum phases in graphene system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا