Do you want to publish a course? Click here

Impact of H.E.S.S. Lidar profiles on Crab Nebula data

65   0   0.0 ( 0 )
 Added by Justine Devin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The H.E.S.S. experiment in Namibia is a high-energy gamma-ray telescope sensitive in the energy range from 30 GeV to a several tens of TeV, that uses the atmospheric Cherenkov technique to detect showers developed within the atmosphere. The elastic lidar, installed on the H.E.S.S. site, allows to reduce the systematic errors related to the atmospheric composition uncertainties thanks to the estimation of the extinction profile for the Cherenkov light (300-650 nm). The latter has a direct impact on the reconstructed parameters, such as the photon energy and the source flux. In this paper we report on physics results obtained on the Crab Nebula spectrum using the lidar profiles obtained at the H.E.S.S. site.



rate research

Read More

MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma. Since autumn 2009 both telescopes have been working together in stereoscopic mode, providing a significant improvement with respect to the previous single-telescope observations. We use observations of the Crab Nebula taken at low zenith angles to assess the performance of the MAGIC stereo system. The trigger threshold of the MAGIC telescopes is 50-60 GeV. Advanced stereo analysis techniques allow MAGIC to achieve a sensitivity as good as (0.76 +/- 0.03)% of the Crab Nebula flux in 50 h of observations above 290 GeV. The angular resolution at those energies is better than ~0.07 degree. We also perform a detailed study of possible systematic effects which may influence the analysis of the data taken with the MAGIC telescopes.
The H.E.S.S. experiment in Namibia, Africa, is a high energy gamma ray tele- scope sensitive in the energy range from 100 Gev to a few tens of TeV, via the use of the atmospheric Cherenkov technique. To minimize the systematic errors on the derived fluxes of the measured sources, one has to calculate the impact of the atmospheric properties, in particular the extinction parameter of the Cherenkov light ( 300-650 nm) exploited to observe and reconstruct atmospheric particle showers initiated by gamma-ray photons. A lidar can provide this kind of information for some given wavelengths within this range. In this paper we report on the hardware components, operation and data acquisition of such a system installed at the H.E.S.S. site.
The High Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray detector, completed in early 2015. HAWC started science operations in August 2013 with a third of the detector taking data. Several known gamma-ray sources have already been detected with the first HAWC data. Among these sources, the Crab Nebula, the brightest steady gamma-ray source at very high energies in our Galaxy, has been detected with high significance. In this contribution I will present the results of the observations of the Crab Nebula with HAWC, including time variability, and the detector performance based on early data.
176 - Marco Tavani 2011
The remarkable Crab Nebula is powered by an energetic pulsar whose relativistic wind interacts with the inner parts of the Supernova Remnant SN1054. Despite low-intensity optical and X-ray variations in the inner Nebula, the Crab has been considered until now substantially stable at X-ray and gamma-ray energies. This paradigm has been shattered by the AGILE discovery in September 2010 of a very intense transient gamma-ray flare of nebular origin. For the first time, the Crab Nebula was caught in the act of accelerating particles up to 10^15 eV within the shortest timescale ever observed in a cosmic nebula (1 day or less). Emission between 50 MeV and a few GeV was detected with a quite hard spectrum within a short timescale. Additional analysis and recent Crab Nebula data lead to identify a total of four major flaring gamma-ray episodes detected by AGILE and Fermi during the period mid-2007/mid-2011. These observations challenge emission models of the pulsar wind interaction and particle acceleration processes. Indeed, the discovery of fast and efficient gamma-ray transient emission from the Crab leads to substantially revise current models of particle acceleration.
We will present our study of the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 and Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call waves. Statistically significant waves show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. The Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE shows both wave and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional wave episodes can be identified. We discuss the spectral properties of the September 2007 wave/flare event and show that the physical properties of the waves are intermediate between steady and flaring states. Plasma instabilities inducing waves appear to involve spatial distances $ l sim 10^{16} ,$cm and enhanced magnetic fields $B sim (0.5 - 1),$}mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the wave phenomenon ($E_w sim 10^{42} , rm erg$, where $E_w$ is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا