Do you want to publish a course? Click here

Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders

62   0   0.0 ( 0 )
 Added by Janusz Gluza Dr
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The future lepton colliders proposed for the High Energy and Precision Frontier set stringent demands on theory. The most ambitious, broad-reaching and demanding project is the FCC-ee. We consider here the present status and requirements on precision calculations, possible ways forward and novel methods, to match the experimental accuracies expected at the FCC-ee. We conclude that the challenge can be tackled by a distributed collaborative effort in academic institutions around the world, provided sufficient support, which is estimated to about 500 man-years over the next 20 years.



rate research

Read More

High precision experimental measurements of the properties of the Higgs boson at $sim$ 125 GeV as well as electroweak precision observables such as the W -boson mass or the effective weak leptonic mixing angle are expected at future $e^+e^-$ colliders such as the FCC-ee. This high anticipated precision has to be matched with theory predictions for the measured quantities at the same level of accuracy. We briefly summarize the status of these predictions within the Standard Model (SM) and of the tools that are used for their determination. We outline how the theory predictions will have to be improved in order to reach the required accuracy, and also comment on the simulation frameworks for the Higgs and EW precision program.
122 - A. Blondel , J. Gluza , S. Jadach 2019
The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of magnitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory $e^+e^-$ collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments.
This document provides a writeup of all contributions to the workshop on High precision measurements of $alpha_s$: From LHC to FCC-ee held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^pm$p DIS and $gamma$-p photoproduction, (ix) photon structure function in $gamma$-$gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $alpha_s(m_Z)$ = 0.1177 $pm$ 0.0013, is about 1%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.
256 - Gauthier Durieux 2017
We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-to bW^+:bar bW^-$ process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.
398 - B.F.L. Ward 2020
To exploit properly the precision physics program at the FCC-ee, the theoretical precision tag on the respective luminosity will need to be improved from the 0.054$%$ (0.061$%$) results at LEP to 0.01$%$, where the former (latter) LEP result has (does not have) the pairs correction. We present an overview of the roads one may take to reach the required 0.01$%$ precision tag at the FCC-ee and we discuss possible synergistic effects of the walk along these roads for other FCC precision theory requirements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا