No Arabic abstract
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(Delta + log^* n)$ communication rounds; here $n$ is the number of nodes and $Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(log^* n)$ rounds even if $Delta = 2$. However, the dependency on $Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that maximal matchings and maximal independent sets cannot be found in $o(Delta + log log n / log log log n)$ rounds with any randomized algorithm in the LOCAL model of distributed computing. As a corollary, it follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in $o(Delta + log n / log log n)$ rounds; this is an improvement over prior lower bounds also as a function of $n$.
We determine the maximum number of maximal independent sets of arbitrary graphs in terms of their covering numbers and we completely characterize the extremal graphs. As an application, we give a similar result for Konig-Egervary graphs in terms of their matching numbers.
We study the computational complexity of several problems connected with finding a maximal distance-$k$ matching of minimum cardinality or minimum weight in a given graph. We introduce the class of $k$-equimatchable graphs which is an edge analogue of $k$-equipackable graphs. We prove that the recognition of $k$-equimatchable graphs is co-NP-complete for any fixed $k ge 2$. We provide a simple characterization for the class of strongly chordal graphs with equal $k$-packing and $k$-domination numbers. We also prove that for any fixed integer $ell ge 1$ the problem of finding a minimum weight maximal distance-$2ell$ matching and the problem of finding a minimum weight $(2 ell - 1)$-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of $delta ln |V(G)|$ unless $mathrm{P} = mathrm{NP}$, where $delta$ is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.
The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation.
Given a graph $G = (V,E)$, an $(alpha, beta)$-ruling set is a subset $S subseteq V$ such that the distance between any two vertices in $S$ is at least $alpha$, and the distance between any vertex in $V$ and the closest vertex in $S$ is at most $beta$. We present lower bounds for distributedly computing ruling sets. More precisely, for the problem of computing a $(2, beta)$-ruling set in the LOCAL model, we show the following, where $n$ denotes the number of vertices, $Delta$ the maximum degree, and $c$ is some universal constant independent of $n$ and $Delta$. $bullet$ Any deterministic algorithm requires $Omegaleft(min left{ frac{log Delta}{beta log log Delta} , log_Delta n right} right)$ rounds, for all $beta le c cdot minleft{ sqrt{frac{log Delta}{log log Delta}} , log_Delta n right}$. By optimizing $Delta$, this implies a deterministic lower bound of $Omegaleft(sqrt{frac{log n}{beta log log n}}right)$ for all $beta le c sqrt[3]{frac{log n}{log log n}}$. $bullet$ Any randomized algorithm requires $Omegaleft(min left{ frac{log Delta}{beta log log Delta} , log_Delta log n right} right)$ rounds, for all $beta le c cdot minleft{ sqrt{frac{log Delta}{log log Delta}} , log_Delta log n right}$. By optimizing $Delta$, this implies a randomized lower bound of $Omegaleft(sqrt{frac{log log n}{beta log log log n}}right)$ for all $beta le c sqrt[3]{frac{log log n}{log log log n}}$. For $beta > 1$, this improves on the previously best lower bound of $Omega(log^* n)$ rounds that follows from the 30-year-old bounds of Linial [FOCS87] and Naor [J.Disc.Math.91]. For $beta = 1$, i.e., for the problem of computing a maximal independent set, our results improve on the previously best lower bound of $Omega(log^* n)$ on trees, as our bounds already hold on trees.
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this paper we study how many MISs of size $k$ an $n$-vertex graph $G$ can have if $G$ does not contain a clique $K_t$. We prove for all fixed $k$ and $t$ that there exist such graphs with $n^{lfloorfrac{(t-2)k}{t-1}rfloor-o(1)}$ MISs of size $k$ by utilizing recent work of Gowers and B. Janzer on a generalization of the Ruzsa-Szemeredi problem. We prove that this bound is essentially best possible for triangle-free graphs when $kle 4$.