No Arabic abstract
The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation.
Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.
We propose a theory which describes the density relaxation of loosely packed, cohesionless granular material under mechanical tapping. Using the compactivity concept we develope a formalism of statistical mechanics which allows us to calculate the density of a powder as a function of time and compactivity. A simple fluctuation-dissipation relation which relates compactivity to the amplitude and frequency of a tapping is proposed. Experimental data of E.R.Nowak et al. [{it Powder Technology} 94, 79 (1997) ] show how density of initially deposited in a fluffy state powder evolves under carefully controlled tapping towards a random close packing (RCP) density. Ramping the vibration amplitude repeatedly up and back down again reveals the existence of reversible and irreversible branches in the response. In the framework of our approach the reversible branch (along which the RCP density is obtained) corresponds to the steady state solution of the Fokker-Planck equation whereas the irreversible one is represented by a superposition of excited states eigenfunctions. These two regimes of response are analyzed theoretically and a qualitative explanation of the hysteresis curve is offered.
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and the saddle-point equation for the order parameter: the distribution $P[h(m)]$ of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in $Gamma$ magnetizations $m approx 0$ become relevant in addition to purely classical values of $m approx pm 1$. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small $Gamma$ quantum fluctuations destroy the phase transition present in the classical limit $Gamma=0$, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random $K$-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.
We give a statistical-mechanical theory of stress transmission in disordered arrays of rigid grains with perfect friction. Starting from the equations of microscopic force and torque balance we derive the fundamental equations of stress equilibrium. We illustrate the validity of our approach by solving the stress distribution of a homogeneous and isotropic array.
The cortex exhibits self-sustained highly-irregular activity even under resting conditions, whose origin and function need to be fully understood. It is believed that this can be described as an asynchronous state stemming from the balance between excitation and inhibition, with important consequences for information-processing, though a competing hypothesis claims it stems from critical dynamics. By analyzing a parsimonious neural-network model with excitatory and inhibitory interactions, we elucidate a noise-induced mechanism called Jensens force responsible for the emergence of a novel phase of arbitrarily-low but self-sustained activity, which reproduces all the experimental features of asynchronous states. The simplicity of our framework allows for a deep understanding of asynchronous states from a broad statistical-mechanics perspective and of the phase transitions to other standard phases it exhibits, opening the door to reconcile, asynchronous-state and critical-state hypotheses. We argue that Jensens forces are measurable experimentally and might be relevant in contexts beyond neuroscience.