Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is represented by a path. We discuss the case of four alternatives in detail and derive explicit polynomial inequality descriptions for optimality regions in parameter space. Using these regions, for each point in parameter space we can prescribe a D-optimal design.
We propose a time-varying generalization of the Bradley-Terry model that allows for nonparametric modeling of dynamic global rankings of distinct teams. We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time and is applicable in sparse settings where the Bradley-Terry may not be fit. We obtain necessary and sufficient conditions for the existence and uniqueness of our estimator. We also derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting where the Bradley-Terry model is not necessarily the true data generating process. We thoroughly test the practical effectiveness of our model using both simulated and real world data and suggest an efficient data-driven approach for bandwidth tuning.
The Bradley-Terry model assigns probabilities for the outcome of paired comparison experiments based on strength parameters associated with the objects being compared. We consider different proposed choices of prior parameter distributions for Bayesian inference of the strength parameters based on the paired comparison results. We evaluate them according to four desiderata motivated by the use of inferred Bradley-Terry parameters to rate teams on the basis of outcomes of a set of games: invariance under interchange of teams, invariance under interchange of winning and losing, normalizability and invariance under elimination of teams. We consider various proposals which fail to satisfy one or more of these desiderata, and illustrate two proposals which satisfy them. Both are one-parameter independent distributions for the logarithms of the team strengths: 1) Gaussian and 2) Type III generalized logistic.
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. Here we investigate local optimality. We propose to study for a given design its region of optimality in parameter space. Often these regions are semi-algebraic and feature interesting symmetries. We demonstrate this with the Rasch Poisson counts model. For any given interaction order between the explanatory variables we give a characterization of the regions of optimality of a special saturated design. This extends known results from the case of no interaction. We also give an algebraic and geometric perspective on optimality of experimental designs for the Rasch Poisson counts model using polyhedral and spectrahedral geometry.
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. The local optimality approach is to study the regions in parameter space where a given design is optimal. In many situations these regions are semi-algebraic. We investigate regions of optimality using computer tools such as yalmip, qepcad, and Mathematica.
We give an overview over the usefulness of the concept of equivariance and invariance in the design of experiments for generalized linear models. In contrast to linear models here pairs of transformations have to be considered which act simultaneously on the experimental settings and on the location parameters in the linear component. Given the transformation of the experimental settings the parameter transformations are not unique and may be nonlinear to make further use of the model structure. The general concepts and results are illustrated by models with gamma distributed response. Locally optimal and maximin efficient design are obtained for the common D- and IMSE-criterion.
Thomas Kahle
,Frank Rottger
,Rainer Schwabe
.
(2019)
.
"The semi-algebraic geometry of saturated optimal designs for the Bradley-Terry model"
.
Frank R\\\"ottger
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا