Do you want to publish a course? Click here

First-Principles Study of Structural Transition in LiNiO2 and High Throughput Screening for Long Life Battery

125   0   0.0 ( 0 )
 Added by Tomohiro Yoshida
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Herein, we performed ab initio screening to identify the best doping of LiNiO2 to achieve improved cycle performance in lithium ion batteries. The interlayer interaction that dominates the c-axis contraction and overall performance was captured well by density functional theory using van der Waals exchange-correlation functionals. The screening indicated that Nb-doping is promising for improving cycle performance. To extract qualitative reasonings, we performed data analysis in a materials informatics manner to obtain a reasonable regression to reproduce the obtained results. LASSO analysis implied that the charge density between the layers in the discharged state is the dominant factor influencing cycle performance.



rate research

Read More

Intrinsic polar metals are rare, especially in oxides, because free electrons screen electric fields in a metal and eliminate the internal dipoles that are needed to break inversion symmetry. Here we use first-principles high-throughput structure screening to predict a new polar metal in bulk and thin film forms. After screening more than 1000 different crystal structures, we find that ordered BiPbTi2O6 can crystallize in three polar and metallic structures, which can be transformed between via pressure or strain. In a heterostructure of layered BiPbTi2O6 and PbTiO3, multiple states with different relative orientations of BiPbTi2O6 polar displacements, and PbTiO3 polarization, can be stabilized. At room temperature, the interfacial coupling enables electric fields to first switch PbTiO3 polarization and subsequently drive 180{deg} change of BiPbTi2O6 polar displacements. At low temperatures, the heterostructure provides a tunable tunnelling barrier and might be used in multi-state memory devices.
Great enthusiasm in single atom catalysts (SACs) for the N2 reduction reaction (NRR) has been aroused by the discovery of Metal (M)-Nx as a promising catalytic center. However,the performance of available SACs,including poor activity and selectivity,is far away from the industrial requirement because of the inappropriate adsorption behaviors of the catalytic centers. Through the first principles high throughput screening, we find that the rational construction of Fe-Fe dual atom centered site distributed on graphite carbon nitride (Fe2/gCN) compromises the ability to adsorb N2H and NH2, achieving the best NRR performance among 23 different transition metal (TM) centers. Our results show that Fe2/gCN can achieve a Faradic efficiency of 100% for NH3 production. Impressively, the limiting potential of Fe2/gCN is estimated as low as -0.13 V, which is hitherto the lowest value among the reported theoretical results. Multiple level descriptors (excess electrons on the adsorbed N2 and integrated crystal orbital Hamilton population) shed light on the origin of NRR activity from the view of energy, electronic structure, and basic characteristics. As a ubiquitous issue during electrocatalytic NRR, ammonia contamination originating from the substrate decomposition can be surmounted. Our predictions offer a new platform for electrocatalytic synthesis of NH3, contributing to further elucidate the structure-performance correlations.
Materials combining both a high refractive index and a wide band gap are of great interest for optoelectronic and sensor applications. However, these two properties are typically described by an inverse correlation with high refractive index appearing in small gap materials and vice-versa. Here, we conduct a first-principles high-throughput study on more than 4000 semiconductors (with a special focus on oxides). Our data confirm the general inverse trend between refractive index and band gap but interesting outliers are also identified. The data are then analyzed through a simple model involving two main descriptors: the average optical gap and the effective frequency. The former can be determined directly from the electronic structure of the compounds, but the latter cannot. This calls for further analysis in order to obtain a predictive model. Nonetheless, it turns out that the negative effect of a large band gap on the refractive index can counterbalanced in two ways: (i) by limiting the difference between the direct band gap and the average optical gap which can be realized by a narrow distribution in energy of the optical transitions and (ii) by increasing the effective frequency which can be achieved through either a high number of transitions from the top of the valence band to the bottom of the conduction or a high average probability for these transitions. Focusing on oxides, we use our data to investigate how the chemistry influences this inverse relationship and rationalize why certain classes of materials would perform better. Our findings can be used to search for new compounds in many optical applications both in the linear and non-linear regime (waveguides, optical modulators, laser, frequency converter, etc.).
Density Functional Theory calculations have been performed to obtain lattice parameters, elastic constants, and electronic properties of ideal pyrochlores with the composition A$_2$B$_2$O$_7$ (where A=La,Y and B=Ti,Sn,Hf, Zr). Some thermal properties are also inferred from the elastic properties. A decrease of the sound velocity (and thus, of the Debye temperature) with the atomic mass of the B ion is observed. Static and dynamical atomic charges are obtained to quantify the degree of covalency/ionicity. A large anomalous contribution to the dynamical charge is observed for Hf, Zr, and specially for Ti. It is attributed to the hybridization between occupied $2p$ states of oxygen and unoccupied d states of the B cation. The analysis based on Mulliken population and deformation charge integrated in the Voronoi polyhedra indicates that the ionicity of these pyrochlores increases in the order Sn--Ti--Hf--Zr. The charge deformation contour plots support this assignment.
This article reports the study of SnO by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). We have calculated the structural, elastic, electronic and optical of SnO under high pressure. The elastic properties such as the elastic constants Cij bulk modulus, shear modulus, Young modulus, anisotropic factor, Pugh ratio, Poisson ratio are calculated and analyzed. Mechanical stability of SnO at all pressure are confirmed by using Born stability criteria in terms of elastic constants and are associated with ductile behaviour based on G/B ratios. It is also found that SnO exhibits very high anisotropy. The energy band structure and density of states are also calculated and analyzed. The results show the semiconducting and metallic properties at 0 (zero) and high pressure, respectively. Furthermore, the optical properties such as dielectric function, refractive index, photoconductivity, absorption coefficients, loss function and reflectivity are also calculated. All the results are compared with those of the SnO where available but most of the results at high pressure are not compared due to unavailability of the results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا