Do you want to publish a course? Click here

Fraisse Limits for Relational Metric Structures

334   0   0.0 ( 0 )
 Added by Paul Tupper
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The general theory developed by Ben Yaacov for metric structures provides Fraisse limits which are approximately ultrahomogeneous. We show here that this result can be strengthened in the case of relational metric structures. We give an extra condition that guarantees exact ultrahomogenous limits. The condition is quite general. We apply it to stochastic processes, the class of diversities, and its subclass of $L_1$ diversities.



rate research

Read More

We realize the Jiang-Su algebra, all UHF algebras, and the hyperfinite II$_{1}$ factor as Fraisse limits of suitable classes of structures. Moreover by means of Fraisse theory we provide new examples of AF algebras with strong homogeneity properties. As a consequence of our analysis we deduce Ramsey-theoretic results about the class of full-matrix algebras.
132 - Alexander Usvyatsov 2008
We compare three notions of genericity of separable metric structures. Our analysis provides a general model theoretic technique of showing that structures are generic in descriptive set theoretic (topological) sense and in measure theoretic sense. In particular, it gives a new perspective on Vershiks theorems on genericity and randomness of Urysohns space among separable metric spaces.
The distinguishing number of a graph $G$ is the smallest positive integer $r$ such that $G$ has a labeling of its vertices with $r$ labels for which there is no non-trivial automorphism of $G$ preserving these labels. Albertson and Collins computed the distinguishing number for various finite graphs, and Imrich, Klavv{z}ar and Trofimov computed the distinguishing number of some infinite graphs, showing in particular that the Random Graph has distinguishing number 2. We compute the distinguishing number of various other finite and countable homogeneous structures, including undirected and directed graphs, and posets. We show that this number is in most cases two or infinite, and besides a few exceptions conjecture that this is so for all primitive homogeneous countable structures.
We prove a strong non-structure theorem for a class of metric structures with an unstable pair of formulae. As a consequence, we show that weak categoricity (that is, categoricity up to isomorphisms and not isometries) implies severa
271 - Wieslaw Kubis 2013
We develop category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in topology of compact spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا