Do you want to publish a course? Click here

Two Jovian planets around the giant star HD202696. A growing population of packed massive planetary pairs around massive stars?

136   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present evidence for a new two-planet system around the giant star HD202696 (= HIP105056, BD+26 4118). The discovery is based on public HIRES radial velocity measurements taken at Keck Observatory between July 2007 and September 2014. We estimate a stellar mass of 1.91$^{+0.09}_{-0.14}M_odot$ for HD202696, which is located close to the base of the red giant branch. A two-planet self-consistent dynamical modeling MCMC scheme of the radial velocity data followed by a long-term stability test suggests planetary orbital periods of $P_{rm b}$ = 517.8$_{-3.9}^{+8.9}$ days and $P_{rm c}$ = 946.6$_{-20.9}^{+20.7}$ days, eccentricities of $e_{rm b}$ = 0.011$_{-0.011}^{+0.078}$ and $e_{rm c}$ = 0.028$_{-0.012}^{+0.065}$ , and minimum dynamical masses of $m_{rm b}$ = 2.00$_{-0.10}^{+0.22}$,$M_{mathrm{Jup}}$ and $m_{rm c}$ = 1.86$_{-0.23}^{+0.18}$,$M_{mathrm{Jup}}$, respectively. Our stable MCMC samples are consistent with orbital configurations predominantly in a mean period ratio of 11:6 and its close-by high order mean-motion commensurabilities with low eccentricities. For the majority of the stable configurations we find an aligned or anti-aligned apsidal libration (i.e. $Deltaomega$ librating around 0$^circ$ or 180$^circ$), suggesting that the HD202696 system is likely dominated by secular perturbations near the high-order 11:6 mean-motion resonance. The HD202696 system is yet another Jovian mass pair around an intermediate mass star with a period ratio below the 2:1 mean motion resonance. Therefore, the HD202696 system is an important discovery, which may shed light on the primordial disk-planet properties needed for giant planets to break the strong 2:1 mean motion resonance and settle in more compact orbits.

rate research

Read More

We present results from a radial-velocity survey of 373 giant stars at Lick Observatory, which started in 1999. The previously announced planets iota Dra b and Pollux b are confirmed by continued monitoring. The frequency of detected planetary companions appears to increase with metallicity. The star nu Oph is orbited by two brown dwarf companions with masses of 22.3 M_Jup and 24.5 M_Jup in orbits with a period ratio close to 6:1. It is likely that the two companions to nu Oph formed in a disk around the star.
We report the discovery of planetary companions orbiting four low-luminosity giant stars with M$_star$ between 1.04 and 1.39 M$_odot$. All four host stars have been independently observed by the EXoPlanets aRound Evolved StarS (EXPRESS) program and the Pan-Pacific Planet Search (PPPS). The companion signals were revealed by multi-epoch precision radial velocities obtained during nearly a decade. The planetary companions exhibit orbital periods between $sim$ 1.2 and 7.1 years, minimum masses of m$_{rm p}$sini $sim$ 1.8-3.7 M$_{jup}$ and eccentricities between 0.08 and 0.42. Including these four new systems, we have detected planetary companions to 11 out of the 37 giant stars that are common targets between the EXPRESS and PPPS. After excluding four compact binaries from the common sample, we obtained a fraction of giant planets (m$_{rm p} gtrsim$ 1-2 M$_{jup}$) orbiting within 5 AU from their parent star of $f = 33.3^{+9.0}_{-7.1} %$. This fraction is significantly higher than that previously reported in the literature by different radial velocity surveys. Similarly, planet formation models under predict the fraction of gas giant around stars more massive than the Sun.
Breakthrough direct detections of planetary companions orbiting A-type stars confirm the existence of massive planets at relatively large separations, but dedicated surveys are required to estimate the frequency of similar planetary systems. To measure the first estimation of the giant exoplanetary systems frequency at large orbital separation around A-stars, we have conducted a deep-imaging survey of young (8-400 Myr), nearby (19-84 pc) A- and F-stars to search for substellar companions in the 10-300 AU range. The sample of 42 stars combines all A-stars observed in previous AO planet search surveys reported in the literature with new AO observations from VLT/NaCo and Gemini/NIRI. It represents an initial subset of the International Deep Planet Survey (IDPS) sample of stars covering M- to B-stars. The data were obtained with diffraction-limited observations in H- and Ks-band combined with angular differential imaging to suppress the speckle noise of the central stars, resulting in typical 5-sigma detection limits in magnitude difference of 12 mag at 1, 14 mag at 2 and 16 mag at 5 which is sufficient to detect massive planets. A detailed statistical analysis of the survey results is performed using Monte Carlo simulations. Considering the planet detections, we estimate the fraction of A-stars having at least one massive planet (3-14 MJup) in the range 5-320 AU to be inside 5.9-18.8% at 68% confidence, assuming a flat distribution for the mass of the planets. By comparison, the brown dwarf (15-75 MJup) frequency for the sample is 2.0-8.9% at 68% confidence in the range 5-320 AU. Assuming power law distributions for the mass and semimajor axis of the planet population, the AO data are consistent with a declining number of massive planets with increasing orbital radius which is distinct from the rising slope inferred from radial velocity (RV) surveys around evolved A-stars.
Previous work concerning planet formation around low-mass stars has often been limited to large planets and individual systems. As current surveys routinely detect planets down to terrestrial size in these systems, a more holistic approach that reflects their diverse architectures is timely. Here, we investigate planet formation around low-mass stars and identify differences in the statistical distribution of planets. We compare the synthetic planet populations to observed exoplanets. We used the Generation III Bern model of planet formation and evolution to calculate synthetic populations varying the central star from solar-like stars to ultra-late M dwarfs. This model includes planetary migration, N-body interactions between embryos, accretion of planetesimals and gas, and long-term contraction and loss of the gaseous atmospheres. We find that temperate, Earth-sized planets are most frequent around early M dwarfs and more rare for solar-type stars and late M dwarfs. The planetary mass distribution does not linearly scale with the disk mass. The reason is the emergence of giant planets for M*>0.5 Msol, which leads to the ejection of smaller planets. For M*>0.3 Msol there is sufficient mass in the majority of systems to form Earth-like planets, leading to a similar amount of Exo-Earths going from M to G dwarfs. In contrast, the number of super-Earths and larger planets increases monotonically with stellar mass. We further identify a regime of disk parameters that reproduces observed M-dwarf systems such as TRAPPIST-1. However, giant planets around late M dwarfs such as GJ 3512b only form when type I migration is substantially reduced. We quantify the stellar mass dependence of multi-planet systems using global simulations of planet formation and evolution. The results compare well to current observational data and predicts trends that can be tested with future observations.
96 - Inwoo Han , B. C. Lee , K. M. Kim 2009
Aims: Our primary goal is to search for planets around intermediate mass stars. We are also interested in studying the nature of radial velocity (RV) variations of K giant stars. Methods: We selected about 55 early K giant (K0 - K4) stars brighter than fifth magnitude that were observed using BOES, a high resolution spectrograph attached to the 1.8 m telescope at BOAO (Bohyunsan Optical Astronomy Observatory). BOES is equipped with $I_2$ absorption cell for high precision RV measurements. Results: We detected a periodic radial velocity variations in the K0 III star gam1leo with a period of P = 429 days. An orbital fit of the observed RVs yields a period of P = 429 days, a semi-amplitude of K = 208 mps, and an eccentricity of e = 0.14. To investigate the nature of the RV variations, we analyzed the photometric, CaII $lambda$ 8662 equivalent width, and line-bisector variations of gam1leo. We conclude that the detected RV variations can be best explained by a planetary companion with an estimated mass of m $sin i = 8.78 M_{Jupiter}$ and a semi-major axis of $a = 1.19$ AU, assuming a stellar mass of 1.23 Msun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا