No Arabic abstract
We describe vacuum fluctuations and photon-field correlations in interacting quantum mechanical light-matter systems, by generalizing the application of mixed quantum-classical dynamics techniques. We employ the multi-trajectory implementation of Ehrenfest mean field theory, traditionally developed for electron-nuclear problems, to simulate the spontaneous emission of radiation in a model quantum electrodynamical cavity-bound atomic system. We investigate the performance of this approach in capturing the dynamics of spontaneous emission from the perspective of both the atomic system and the cavity photon field, through a detailed comparison with exact benchmark quantum mechanical observables and correlation functions. By properly accounting for the quantum statistics of the vacuum field, while using mixed quantum-classical (mean field) trajectories to describe the evolution, we identify a surprisingly accurate and promising route towards describing quantum effects in realistic correlated light-matter systems.
Vacuum induced coherence in a strongly coupled cavity consisting of a three-level system is studied theoretically. The effects of the strong coupling to electromagnetic field vacuum are examined by solution of an open-system quantum master equation. The numerical results show that the system exhibits population trapping, and the numerical results are interpreted with analytical expressions derived from a new basis in the weak excitation regime. We further show that the generated effects can be probed with weak external fields. Moreover, it is shown that the induced coherence can be controlled by the applied field parameters like field detuning. Finally, we study the trapping dynamics in the strong field excitation regime, and also demonstrate that a recently proposed asymmetric pumping regime (limited to the weak coupling regime) can remove the radiative decay of coherent Rabi oscillations, with both weak and strong excitation fields.
This review describes an emerging field of waveguide quantum electrodynamics (WQED) studying interaction of photons propagating in a waveguide with localized quantum emitters. In such systems, atoms and guided photons are hybridized with each other and form polaritons that can propagate along the waveguide, contrary to the cavity quantum optics setup. Emerging in such a system collective light-atom interactions result in super- and sub-radiant quantum states, that are promising for quantum information processing, and give rise to peculiar quantum correlations between photons. The review is aimed at both experimentalists and theoreticians from various fields of physics interested in the rapidly developing subject of WQED. We highlight recent groundbreaking experiments performed for different quantum platforms, including cold atoms, superconducting qubits, semiconductor quantum dots, quantum solid-state defects and at the same time provide a comprehensive introduction into various theoretical techniques to study atom-photon interactions in the waveguide.
Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.
Photon-number correlation measurements are performed on bright squeezed vacuum states using a standard Bell-test setup, and quantum correlations are observed for conjugate polarization-frequency modes. We further test the entanglement witnesses for these states and demonstrate the violation of the separability criteria, which infers that all the macroscopic Bell states, containing typically $10^6$ photons per pulse, are polarization entangled. The study also reveals the symmetry of macroscopic Bell states with respect to local polarization transformations.
We show that photon coincidence spectroscopy can provide an unambiguous signature of two atoms simultaneously interacting with a quantised cavity field mode. We also show that the single-atom Jaynes-Cummings model can be probed effectively via photon coincidence spectroscopy, even with deleterious contributions to the signal from two-atom events. In addition, we have explicitly solved the eigenvectors and eigenvalues of two two-level atoms coupled to a quantised cavity mode for differing coupling strengths.