Do you want to publish a course? Click here

What laboratory experiments can teach us about cosmology: A chameleon example

106   0   0.0 ( 0 )
 Added by Clare Burrage
 Publication date 2019
  fields Physics
and research's language is English
 Authors Clare Burrage




Ask ChatGPT about the research

Laboratory experiments can shed light on theories of new physics introduced in order to explain cosmological mysteries, including the nature of dark energy and dark matter. In this article I will focus on one particular example of this, the chameleon model. The chameleon is an example of a theory which could modify gravity on cosmological distance scales, but its non-linear behavior means that it can also be tested with suitably designed laboratory experiments. The aim of this overview is to present recent theoretical developments to the experimental community.



rate research

Read More

Observations of star-forming galaxies in the distant Universe (z > 2) are starting to confirm the importance of massive stars in shaping galaxy emission and evolution. Inevitably, these distant stellar populations are unresolved, and the limited data available must be interpreted in the context of stellar population synthesis models. With the imminent launch of JWST and the prospect of spectral observations of galaxies within a gigayear of the Big Bang, the uncertainties in modelling of massive stars are becoming increasingly important to our interpretation of the high redshift Universe. In turn, these observations of distant stellar populations will provide ever stronger tests against which to gauge the success of, and flaws in, current massive star models.
The effect of magnetic fields on the frequencies of toroidal oscillations of neutron stars is derived to lowest order. Interpreting the fine structure in the QPO power spectrum of magnetars following giant flares reported by Strohmayer and Watts (2006) to be Zeeman splitting of degenerate toroidal modes, we estimate a crustal magnetic field of order 10^{15} Gauss or more. We suggest that residual m, -m symmetry following such splitting might allow beating of individual frequency components that is slow enough to be observed.
Combining insights from both the effective field theory of quantum gravity and black hole thermodynamics, we derive two novel consistency relations to be satisfied by any quantum theory of gravity. First, we show that a particular combination of the number of massless (light) fields in the theory must take integer values. Second, we show that, once the massless spectrum is fixed, the Wilson coefficient of the Kretschmann scalar in the low-energy effective theory is fully determined by the logarithm of a single natural number.
A number of experiments are currently working towards a measurement of the 21 cm signal from the Epoch of Reionization. Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the $sim 0.1~rm{km}^2$ collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described wedge footprint in k-space. Uncertainties in the reionization history are accounted for using a series of simulations which vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the IGM. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that $0.1~rm{km}^2$ of collecting area is enough to ensure a very high significance ($gtrsim30sigma$) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.
We compare the Tcs found in different families of optimally-doped High-Tc cuprates and find, contrary generally accepted lore, that pairing is not exclusively in the CuO2 layers. Evidence for additional pairing interactions, that take place outside the CuO2 layers, is found in two different classes of cuprates, namely the charge reservoir and the chain layer cuprates. The additional pairing in these layers suppresses fluctuations and hence enhances Tc. Tcs higher than 100K, are found in the cuprates containing charge reservoir layers with cations of Tl, Bi, or Hg that are known to be negative-U ions. Comparisons with other cuprates that have the same sequence of optimally doped CuO2 layers, but have lower Tcs, show that Tc is increased by factors of two or more upon insertion of the charge reservoir layer(s). The Tl ion has been shown to be an electronic pairing center in the model system (Pb,Tl)Te and data in the literature that suggest it behaves similarly in the cuprates. A number of other puzzling results that are found in the Hg, Tl, and Bi cuprates can be understood in terms of negative-U ion pairing centers in the charge reservoir layers. There is also evidence for additional pairing in the chain layer cuprates. Superconductivity that originates in the double zigzag Cu chains layers that has been recently demonstrated in NMR studies of Pr-247 leads to the suggestion of a linear, charge 1, diamagnetic quasiparticle formed from a charge-transfer exciton and a hole. Other properties of the chain layer cuprates that are difficult to explain using models in which the pairing is solely confined to the CuO2 layers can be understood if supplementary pairing in the chain layers is included. Finally, we speculate that these same linear quasi-particles can exist in the 2-dimensional CuO2 layers as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا