Do you want to publish a course? Click here

Long-term optical monitoring of the solar atmosphere in Italy

94   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Probably, the long-term monitoring of the solar atmosphere started in Italy with the first telescopic observations of the Sun made by Galileo Galilei in the early $17^{mathrm{th}}$ century. His recorded observations and science results, as well as the work carried out by other following outstanding Italian astronomers inspired the start of institutional programs of regular solar observations at the Arcetri, Catania, and Rome Observatories. These programs have accumulated daily images of the solar photosphere and chromosphere taken at various spectral bands over a time span greater than 80 years. In the last two decades, regular solar observations were continued with digital cameras only at the Catania and Rome Observatories, which are now part of the INAF National Institute for Astrophysics. At the two sites, daily solar images are taken at the photospheric G-band, Blue ($lambda=409.4$ nm), and Red ($lambda=606.9$ nm) continua spectral ranges and at the chromospheric Ca II K and H$alpha$ lines, with a $2^{primeprime}$ spatial resolution. Solar observation in Italy, which benefits from over 2500 hours of yearly sunshine, currently aims at the operational monitoring of solar activity and long-term variability and at the continuation of the historical series as well. Existing instruments will be soon enriched by the SAMM double channel telescope equipped with magneto-optical filters that will enable the tomography of the solar atmosphere with simultaneous observations at the K I 769.9 nm and Na I D 589.0 nm lines. In this contribution, we present the available observations and outline their scientific relevance.



rate research

Read More

We present results from photometric monitoring of V900 Mon, one of the newly discovered and still under-studied object from FU Orionis type. FUor phenomenon is very rarely observed, but it is essential for stellar evolution. Since we only know about twenty stars of this type, the study of each new object is very important for our knowledge. Our data was obtained in the optical spectral region with BVRI Johnson-Cousins set of filters during the period from September 2011 to April 2021. In order to follow the photometric history of the object, we measured its stellar magnitudes on the available plates from the Mikulski Archive for Space Telescopes. The collected archival data suggests that the rise in brightness of V900 Mon began after January 1989 and the outburst goes so far. In November 2009, when the outburst was registered, the star had already reached a level of brightness close to the current one. Our observations indicate that during the period 2011-2017 the stellar magnitude increased gradually in each pass band. The observed amplitude of the outburst is about 4 magnitudes (R). During the last three years, the increase in brightness has stopped and there has even been a slight decline. The comparison of the light curves of the known FUor objects shows that they are very diverse and are rarely repeated. However, the photometric data we have so far shows that the V900 Mons light curve is somewhat similar to this of V1515 Cyg and V733 Cep.
We present 10 years of R-band monitoring data of 31 northern blazars which were either detected at very high energy (VHE) gamma rays or listed as potential VHE gamma-ray emitters. The data comprise 11820 photometric data points in the R-band obtained in 2002-2012. We analyze the light curves by determining their power spectral density (PSD) slopes assuming a power-law dependence with a single slope $beta$ and a Gaussian probability density function (PDF). We use the multiple fragments variance function (MFVF) combined with a forward-casting approach and likelihood analysis to determine the slopes and perform extensive simulations to estimate the uncertainties of the derived slopes. We also look for periodic variations via Fourier analysis and quantify the false alarm probability through a large number of simulations. Comparing the obtained PSD slopes to values in the literature, we find the slopes in the radio band to be steeper than those in the optical and gamma rays. Our periodicity search yielded one target, Mrk 421, with a significant (p<5%) period. Finding one significant period among 31 targets is consistent with the expected false alarm rate, but the period found in Mrk~421 is very strong and deserves further consideration}.
323 - A. Lobel 2010
We present results of a long-term spectroscopic monitoring program (since mid 2009) of Luminous Blue Variables with the new HERMES echelle spectrograph on the 1.2 m Mercator telescope at La Palma (Spain). We investigate high-resolution (R=80,000) optical spectra of two LBVs, P Cyg and HD 168607, the LBV candidates MWC 930 and HD 168625, and the LBV binary MWC 314. In P Cyg we observe flux changes in the violet wings of the Balmer H{alpha}, H{beta}, and He I lines between May and Sep 2009. The changes around 200 km/s to 300 km/s are caused by variable opacity at the base of the supersonic wind from the blue supergiant. We observe in MWC 314 broad double-peaked metal emission lines with invariable radial velocities over time. On the other hand, we measure in the photospheric S II {lambda}5647 absorption line, with lower excitation energy of ~14 eV, an increase of the heliocentric radial velocity centroid from 37 km/s to 70 km/s between 5 and 10 Sep 2009 (and 43 km/s on 6 Apr 2010). The increase of radial velocity of ~33 km/s in only 5 days can confirm the binary nature of this LBV close to the Eddington luminosity limit. A comparison with VLT-UVES and Keck-Hires spectra observed over the past 13 years reveals strong flux variability in the violet wing of the H{alpha} emission line of HD 168625, and in the absorption portion of the H{beta} line of HD 168607. In HD 168625 we observe H{alpha} wind absorption at velocities exceeding 200 km/s which develops between Apr and June 2010.
We present an analysis of long-term photometric variability for nearby red dwarfs at optical wavelengths. The sample consists of 264 M dwarfs south of DEC = +30 with V-K = 3.96-9.16 and Mv~10-20 (spectral types M2V-M8V), most of which are within 25 pc. The stars have been observed in the VRI filters for ~4-14 years at the CTIO/SMARTS 0.9m telescope. Of the 238 red dwarfs within 25 pc, we find that only ~8% are photometrically variable by at least 20 mmag (~2%) in the VRI bands. We find that high variability at optical wavelengths over the long-term can be used to identify young stars. Overall, however, the fluxes of most red dwarfs at optical wavelengths are steady to a few percent over the long term. The low overall rate of photometric variability for red dwarfs is consistent with results found in previous work on similar stars on shorter timescales, with the body of work indicating that most red dwarfs are only mildly variable. We highlight 17 stars that show long-term changes in brightness, sometimes because of flaring activity or spots, and sometimes because of stellar cycles similar to our Suns solar cycle. Remarkably, two targets show brightnesses that monotonically increase (G 169-029) or decrease (WT 460AB) by several percent over a decade. We also provide long-term variability measurements for seven M dwarfs within 25 pc that host exoplanets, none of which vary by more than 20 mmag. Both as a population, and for the specific red dwarfs with exoplanets observed here, photometric variability is therefore often not a concern for planetary environments, at least at the optical wavelengths where they emit much of their light.
190 - J. L. Chen , H. G. Wang , N. Wang 2011
The mode switching phenomenon of PSR B0329+54 is investigated based on the long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m radio telescope at 1540 MHz. At that frequency, the change of relative intensity between the leading and trailing components is the predominant feature of mode switching. The intensity ratios between the leading and trailing components are measured for the individual profiles averaged over a few minutes. It is found that the ratios follow normal distributions, where the abnormal mode has a wider typical width than the normal mode, indicating that the abnormal mode is less stable than the normal mode. Our data show that 84.9% of the time for PSR B0329+54 was in the normal mode and 15.1% was in the abnormal mode. From the two passages of eight-day quasi-continuous observations in 2004, and supplemented by the daily data observed with 15 m telescope at 610 MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales are constrained with the Bayesian inference method. It is found that the gamma distribution with the shape parameter slightly smaller than 1 is favored over the normal, lognormal and Pareto distributions. The optimal scale parameters of the gamma distribution is 31.5 minutes for the abnormal mode and 154 minutes for the normal mode. The shape parameters have very similar values, i.e. 0.75^{+0.22}_{-0.17} for the normal mode and 0.84^{+0.28}_{-0.22} for the abnormal mode, indicating the physical mechanisms in both modes may be the same. No long-term modulation of the relative intensity ratios was found for both the modes, suggesting that the mode switching was stable. The intrinsic timescale distributions, for the first time constrained for this pulsar, provide valuable information to understand the physics of mode switching.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا