Do you want to publish a course? Click here

Two-Photon Resonance Fluorescence of a Ladder-Type Atomic System

128   0   0.0 ( 0 )
 Added by Simone Gasparinetti
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multi-photon emitters are a sought-after resource in quantum photonics. Nonlinear interactions between a multi-level atomic system and a coherent drive can lead to resonant two-photon emission, but harvesting light from this process has remained a challenge due to the small oscillator strengths involved. Here we present a study of two-photon resonance fluorescence at microwave frequencies, using a superconducting, ladder-type artificial atom, a transmon, strongly coupled to a waveguide. We drive the two-photon transition between the ground and second-excited state at increasingly high powers and observe a resonance fluorescence peak whose intensity becomes comparable to single-photon emission until it splits into a Mollow-like triplet. We measure photon correlations of frequency-filtered spectral lines and find that while emission at the fundamental frequency stays antibunched, the resonance fluorescence peak at the two-photon transition is superbunched. Our results provide a route towards the realization of multi-photon sources in the microwave domain.



rate research

Read More

A cavity quantum electrodynamical (QED) system beyond the strong-coupling regime is expected to exhibit intriguing quantum phenomena. Here we report a direct measurement of the photon-dressed qubit transition frequencies up to four photons by harnessing the same type of state transitions in an ultrastrongly coupled circuit-QED system realized by inductively coupling a superconducting flux qubit to a coplanar-waveguide resonator. This demonstrates a convincing observation of the photon-dressed Bloch-Siegert shift in the ultrastrongly coupled quantum system. Moreover, our results show that the photon-dressed Bloch-Siegert shift becomes more pronounced as the photon number increases, which is a characteristic of the quantum Rabi model.
Strong light-matter coupling is a necessary condition for exchanging information in quantum information protocols. It is used to couple different qubits (matter) via a quantum bus (photons) or to communicate different type of excitations, e.g. transducing between light and phonons or magnons. An unexplored, so far, interface is the coupling between light and topologically protected particle like excitations as magnetic domain walls, skyrmions or vortices. Here, we show theoretically that a single photon living in a superconducting cavity can be coupled strongly to the gyrotropic mode of a magnetic vortex in a nanodisc. We combine numerical and analytical calculations for a superconducting coplanar waveguide resonator and different realizations of the nanodisc (materials and sizes). We show that, for enhancing the coupling, constrictions fabricated in the resonator are beneficial, allowing to reach the strong coupling in CoFe discs of radius $200-400$ nm having resonance frequencies of few GHz. The strong coupling regime permits to exchange coherently a single photon and quanta of vortex excitations. Thus, our calculations show that the device proposed here serves as a transducer between photons and gyrating vortices, opening the way to complement superconducting qubits with topologically protected spin-excitations like vortices or skyrmions. We finish by discussing potential applications in quantum data processing based on the exploitation of the vortex as a short-wavelength magnon emitter.
We report on the observation of bright emission of single photons under pulsed resonance fluorescence conditions from a single quantum dot (QD) in a micropillar cavity. The brightness of the QD fluorescence is greatly enhanced via the coupling to the fundamental mode of a micropillar, allowing us to determine a single photon extraction efficiency of $(20.7pm0.8)~%$ per linear polarization basis. This yields an overall extraction efficiency of $(41.4pm1.5)~%$ in our device. We observe the first Rabi-oscillation in a weakly coupled quantum dot-micropillar system under coherent pulsed optical excitation, which enables us to deterministically populate the excited QD state. In this configuration, we probe the single photon statistics of the device yielding $g^{(2)}(0)=0.072pm0.011$ at a QD-cavity detuning of $75~mu$eV.
We present an open-system master equation study of the coherent and incoherent resonance fluorescence spectrum from a two-level quantum system under coherent pulsed excitation. Several pronounced features which differ from the fluorescence under a constant drive are highlighted, including a multi-peak structure and a pronounced off-resonant spectral asymmetry, in stark contrast to the conventional symmetrical Mollow triplet. We also study semiconductor quantum dot systems using a polaron master equation, and show how the key features of dynamic resonance fluorescence change with electron--acoustic-phonon coupling.
Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of $sim 2$ ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of $sim10^9$. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا