No Arabic abstract
High spin band structures of neutron-rich $^{152-158}$Pm isotopes have been obtained from the measurement of prompt $gamma$-rays of isotopically identified fragments produced in fission of $^{238}$U+$^{9}$Be and detected using the VAMOS++ magnetic spectrometer and EXOGAM segmented Clover array at GANIL and also from the high statistics $gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$-$gamma$ data from the spontaneous fission of $^{252}$Cf using Gammasphere. The excited states in $^{157}$Pm and those above the isomers in even-A Pm isotopes $^{152,154,156,158}$Pm have been identified for the first time. The spectroscopic information on the rotational band structures in odd-A Pm isotopes has been extended considerably to higher spins and the possibility of the presence of reflection asymmetric shapes is explored. The configuration assignments are based on the results of Cranked Relativistic Hartree-Bogoliubov calculations. From the systematics of bands in odd-A Pm isotopes and weak population of opposite parity bands, octupole deformed shapes in neutron rich Pm isotopes beyond $N=90$ seem unlikely to be present.
Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $gamma$-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) keV above the neutron separation energy was observed in 23O.
The reaction mechanisms best suited for the production of neutron-rich nuclei, fragmentation and fission, are discussed. Measurements of the production cross sections of reaction residues together with model calculations allow to conclude about the expected production rates of neutron-rich isotopes in future facilities.
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,99}mathrm{Rb}$ and $^{98-100}mathrm{Sr}$ have been determined with a precision of $6 - 12 mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80 mathrm{keV}$ excitation energy in $^{98}mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $Aapprox 100$ region of the nuclear chart.
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called `magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped explain the nuclear magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number 6 in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.