Do you want to publish a course? Click here

Reaction mechanisms involved in the production of neutron-rich isotopes

124   0   0.0 ( 0 )
 Added by Jose Benlliure
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

The reaction mechanisms best suited for the production of neutron-rich nuclei, fragmentation and fission, are discussed. Measurements of the production cross sections of reaction residues together with model calculations allow to conclude about the expected production rates of neutron-rich isotopes in future facilities.



rate research

Read More

Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements $11 le Z le 32$ were determined by varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements $22 le Z le 25$ (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. The current results confirm those of our previous experiment with a 76Ge beam: enhanced production cross sections for neutron-rich fragments near Z=20.
Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $gamma$-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.
114 - N. Frank , T. Baumann , D. Bazin 2007
The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) keV above the neutron separation energy was observed in 23O.
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,99}mathrm{Rb}$ and $^{98-100}mathrm{Sr}$ have been determined with a precision of $6 - 12 mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80 mathrm{keV}$ excitation energy in $^{98}mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $Aapprox 100$ region of the nuclear chart.
We report mass measurements of neutron-rich Ga isotopes $^{80-85}$Ga with TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). The measurements determine the masses of $^{80-83}$Ga in good agreement with previous measurements. The masses of $^{84}$Ga and $^{85}$Ga were measured for the first time. Uncertainties between $25-48$ keV were reached. The new mass values reduce the nuclear uncertainties associated with the production of A $approx$ 84 isotopes by the emph{r}-process for astrophysical conditions that might be consistent with a binary neutron star (BNS) merger producing a blue kilonova. Our nucleosynthesis simulations confirm that BNS merger may contribute to the first abundance peak under moderate neutron-rich conditions with electron fractions $Y_e=0.35-0.38$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا