Do you want to publish a course? Click here

A Concise Review of 5G New Radio Capabilities for Directional Access at mmWave Frequencies

149   0   0.0 ( 0 )
 Added by Olga Galinina
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this work, we briefly outline the core 5G air interface improvements introduced by the latest New Radio (NR) specifications, as well as elaborate on the unique features of initial access in 5G NR with a particular emphasis on millimeter-wave (mmWave) frequency range. The highly directional nature of 5G mmWave cellular systems poses a variety of fundamental differences and research problem formulations, and a holistic understanding of the key system design principles behind the 5G NR is essential. Here, we condense the relevant information collected from a wide diversity of 5G NR standardization documents (based on 3GPP Release 15) to distill the essentials of directional access in 5G mmWave cellular, which becomes the foundation for any corresponding system-level analysis.



rate research

Read More

The newly introduced ultra-reliable low latency communication service class in 5G New Radio depends on innovative low latency radio resource management solutions that can guarantee high reliability. Grant-free random access, where channel resources are accessed without undergoing assignment through a handshake process, is proposed in 5G New Radio as an important latency reducing solution. However, this comes at an increased likelihood of collisions resulting from uncontrolled channel access, when the same resources are preallocated to a group of users. Novel reliability enhancement techniques are therefore needed. This article provides an overview of grant-free random access in 5G New Radio focusing on the ultra-reliable low latency communication service class, and presents two reliability-enhancing solutions. The first proposes retransmissions over shared resources, whereas the second proposal incorporates grant-free transmission with non-orthogonal multiple access with overlapping transmissions being resolved through the use of advanced receivers. Both proposed solutions result in significant performance gains, in terms of reliability as well as resource efficiency. For example, the proposed non-orthogonal multiple access scheme can support a normalized load of more than 1.5 users/slot at packet loss rates of ~10^{-5} - a significant improvement over the maximum supported load with conventional grant-free schemes like slotted-ALOHA.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
The recent and upcoming releases of the 3rd Generation Partnership Projects 5G New Radio specifications include features that are motivated by providing connectivity services to a broad set of verticals, including the automotive, rail, and air transport industries. Currently, several radio access network features are being further enhanced or newly introduced in NR to improve 5Gs capability to provide fast, reliable, and non-limiting connectivity for transport applications. In this article, we review the most important characteristics and requirements of a wide range of services that are driven by the desire to help the transport sector to become more sustainable, economically viable, safe, and secure. These requirements will be supported by the evolving and entirely new features of 5G NR systems, including accurate positioning, reference signal design to enable multi-transmission and reception points, service-specific scheduling configuration, and service quality prediction.
Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems.
To optimally cover users in millimeter-Wave (mmWave) networks, clustering is needed to identify the number and direction of beams. The mobility of users motivates the need for an online clustering scheme to maintain up-to-date beams towards those clusters. Furthermore, mobility of users leads to varying patterns of clusters (i.e., users move from the coverage of one beam to another), causing dynamic traffic load per beam. As such, efficient radio resource allocation and beam management is needed to address the dynamicity that arises from mobility of users and their traffic. In this paper, we consider the coexistence of Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile BroadBand (eMBB) users in 5G mmWave networks and propose a Quality-of-Service (QoS) aware clustering and resource allocation scheme. Specifically, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used for online clustering of users and the selection of the number of beams. In addition, Long Short Term Memory (LSTM)-based Deep Reinforcement Learning (DRL) scheme is used for resource block allocation. The performance of the proposed scheme is compared to a baseline that uses K-means and priority-based proportional fairness for clustering and resource allocation, respectively. Our simulation results show that the proposed scheme outperforms the baseline algorithm in terms of latency, reliability, and rate of URLLC users as well as rate of eMBB users.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا