Do you want to publish a course? Click here

Probing the Running of Primordial Bispectrum and Trispectrum using CMB Spectral Distortions

101   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English
 Authors Razieh Emami




Ask ChatGPT about the research

We compute the impact of the running of higher order density correlation functions on the two point functions of CMB spectral distortions (SD). We show that having some levels of running enhances all of the SDs by few orders of magnitude which might make them easier to detect. Taking a reasonable range for $ |n_{f_{NL}} |lesssim 1.1$ and with $f_{NL} = 5$ we show that for PIXIE like experiment, the signal to noise ratio, $(S/N)_{i}$, enhances to $lesssim 4000$ and $lesssim 10$ for $mu T$ and $yT$ toward the upper limit of $n_{f_{NL}}$. In addition, assuming $ |n_{tau_{NL}}|< 1$ and $tau_{NL} = 10^3$, $(S/N)_{i}$ increases to $lesssim 8times 10^{6}$, $lesssim 10^4$ and $lesssim 18$ for $mumu$, $mu y$ and $yy$, respectively. Therefore CMB spectral distortion can be a direct probe of running of higher order correlation functions in the near future.

rate research

Read More

We present trispectrum estimation methods which can be applied to general non-separable primordial and CMB trispectra. We present a general optimal estimator for the connected part of the trispectrum, for which we derive a quadratic term to incorporate the effects of inhomogeneous noise and masking. We describe a general algorithm for creating simulated maps with given arbitrary (and independent) power spectra, bispectra and trispectra. We propose a universal definition of the trispectrum parameter $T_{NL}$, so that the integrated bispectrum on the observational domain can be consistently compared between theoretical models. We define a shape function for the primordial trispectrum, together with a shape correlator and a useful parametrisation for visualizing the trispectrum. We derive separable analytic CMB solutions in the large-angle limit for constant and local models. We present separable mode decompositions which can be used to describe any primordial or CMB bispectra on their respective wavenumber or multipole domains. By extracting coefficients of these separable basis functions from an observational map, we are able to present an efficient estimator for any given theoretical model with a nonseparable trispectrum. The estimator has two manifestations, comparing the theoretical and observed coefficients at either primordial or late times. These mode decomposition methods are numerically tractable with order $l^5$ operations for the CMB estimator and approximately order $l^6$ for the general primordial estimator (reducing to order $l^3$ in both cases for a special class of models). We also demonstrate how the trispectrum can be reconstructed from observational maps using these methods.
Departures of the energy spectrum of the cosmic microwave background (CMB) from a perfect blackbody probe a fundamental property of the universe -- its thermal history. Current upper limits, dating back some 25 years, limit such spectral distortions to 50 parts per million and provide a foundation for the Hot Big Bang model of the early universe. Modern upgrades to the 1980s-era technology behind these limits enable three orders of magnitude or greater improvement in sensitivity. The standard cosmological model provides compelling targets at this sensitivity, spanning cosmic history from the decay of primordial density perturbations to the role of baryonic feedback in structure formation. Fully utilizing this sensitivity requires concurrent improvements in our understanding of competing astrophysical foregrounds. We outline a program using proven technologies capable of detecting the minimal predicted distortions even for worst-case foreground scenarios.
Cosmic magnetic fields are observed to be coherent on large scales and could have a primordial origin. Non-Gaussian signals in the cosmic microwave background (CMB) are generated by primordial magnetic fields as the magnetic stresses and temperature anisotropy they induce depend quadratically on the magnetic field. We compute the CMB scalar trispectrum on large angular scales, for nearly scale-invariant magnetic fields, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately $10^{-29}$ and $10^{-19}$, respectively. The scalar anisotropic stress trispectrum is also calculated in the flat-sky approximation and yields a similar result. Observational limits on CMB non-Gaussianity from the Planck mission data allow us to set upper limits of $B_0 lesssim 0.6 $ nG on the present value of the primordial cosmic magnetic field. Considering the inflationary magnetic curvature mode in the trispectrum can further tighten the magnetic field upper limit to $B_0 lesssim 0.05 $ nG. These sub-nanoGauss constraints from the magnetic trispectrum are the most stringent limits so far on the strength of primordial magnetic fields, on megaparsec scales, significantly better than the limits obtained from the CMB bispectrum and the CMB power spectrum.
We propose a new mechanism by which dark matter (DM) can affect the early universe. The hot interior of a macroscopic DM, or macro, can behave as a heat reservoir so that energetic photons are emitted from its surface. This results in spectral distortions (SDs) of the cosmic microwave background. The SDs depend on the density and the cooling processes of the interior, and the surface composition of the Macros. We use neutron stars as a model for nuclear-density Macros and find that the spectral distortions are mass-independent for fixed density. In our work, we find that, for Macros of this type that constitute 100$%$ of the dark matter, the $mu$ and $y$ distortions can be above detection threshold for typical proposed next-generation experiments such as PIXIE.
Measurements of the cosmic microwave background (CMB) spectral distortions (SDs) will open a new window on the very early universe, providing new information complementary to that gathered from CMB temperature and polarization anisotropies. In this paper, we study their synergy as a function of the characteristics of the considered experiments. In particular, we examine a wide range of sensitivities for possible SD measurements, spanning from FIRAS up to noise levels 1000 times better than PIXIE, and study their constraining power when combined with current or future CMB anisotropy experiments such as Planck or LiteBIRD plus CMB-S4. We consider a number of different cosmological models such as the $Lambda$CDM, as well as its extensions with the running of the scalar spectral index, the decay or the annihilation of dark matter (DM) particles. While upcoming CMB anisotropy experiments will be able to decrease the uncertainties on inflationary parameters such as $A_s$ and $n_s$ by about a factor 2 in the $Lambda$CDM case, we find that an SD experiment 10 times more sensitive than PIXIE (comparable to the proposed PRISM satellite) could potentially further contribute to constrain these parameters. This is even more significant in the case of the running of the scalar spectral index. Furthermore, as expected, constraints on DM particles decaying at redshifts probed by SDs will improve by orders of magnitude even with an experiment 10 times worse than PIXIE as compared to CMB anisotropies or Big Bang Nucleosynthesis bounds. On the contrary, DM annihilation constraints will not significantly improve over CMB anisotropy measurements. For some of the cases considered, we study the impact of marginalizing over the contribution from reionization and structure formation. Finally, we forecast the constraints obtainable with sensitivities achievable either from the ground or from a balloon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا