No Arabic abstract
We present trispectrum estimation methods which can be applied to general non-separable primordial and CMB trispectra. We present a general optimal estimator for the connected part of the trispectrum, for which we derive a quadratic term to incorporate the effects of inhomogeneous noise and masking. We describe a general algorithm for creating simulated maps with given arbitrary (and independent) power spectra, bispectra and trispectra. We propose a universal definition of the trispectrum parameter $T_{NL}$, so that the integrated bispectrum on the observational domain can be consistently compared between theoretical models. We define a shape function for the primordial trispectrum, together with a shape correlator and a useful parametrisation for visualizing the trispectrum. We derive separable analytic CMB solutions in the large-angle limit for constant and local models. We present separable mode decompositions which can be used to describe any primordial or CMB bispectra on their respective wavenumber or multipole domains. By extracting coefficients of these separable basis functions from an observational map, we are able to present an efficient estimator for any given theoretical model with a nonseparable trispectrum. The estimator has two manifestations, comparing the theoretical and observed coefficients at either primordial or late times. These mode decomposition methods are numerically tractable with order $l^5$ operations for the CMB estimator and approximately order $l^6$ for the general primordial estimator (reducing to order $l^3$ in both cases for a special class of models). We also demonstrate how the trispectrum can be reconstructed from observational maps using these methods.
We compute the impact of the running of higher order density correlation functions on the two point functions of CMB spectral distortions (SD). We show that having some levels of running enhances all of the SDs by few orders of magnitude which might make them easier to detect. Taking a reasonable range for $ |n_{f_{NL}} |lesssim 1.1$ and with $f_{NL} = 5$ we show that for PIXIE like experiment, the signal to noise ratio, $(S/N)_{i}$, enhances to $lesssim 4000$ and $lesssim 10$ for $mu T$ and $yT$ toward the upper limit of $n_{f_{NL}}$. In addition, assuming $ |n_{tau_{NL}}|< 1$ and $tau_{NL} = 10^3$, $(S/N)_{i}$ increases to $lesssim 8times 10^{6}$, $lesssim 10^4$ and $lesssim 18$ for $mumu$, $mu y$ and $yy$, respectively. Therefore CMB spectral distortion can be a direct probe of running of higher order correlation functions in the near future.
Cosmic magnetic fields are observed to be coherent on large scales and could have a primordial origin. Non-Gaussian signals in the cosmic microwave background (CMB) are generated by primordial magnetic fields as the magnetic stresses and temperature anisotropy they induce depend quadratically on the magnetic field. We compute the CMB scalar trispectrum on large angular scales, for nearly scale-invariant magnetic fields, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately $10^{-29}$ and $10^{-19}$, respectively. The scalar anisotropic stress trispectrum is also calculated in the flat-sky approximation and yields a similar result. Observational limits on CMB non-Gaussianity from the Planck mission data allow us to set upper limits of $B_0 lesssim 0.6 $ nG on the present value of the primordial cosmic magnetic field. Considering the inflationary magnetic curvature mode in the trispectrum can further tighten the magnetic field upper limit to $B_0 lesssim 0.05 $ nG. These sub-nanoGauss constraints from the magnetic trispectrum are the most stringent limits so far on the strength of primordial magnetic fields, on megaparsec scales, significantly better than the limits obtained from the CMB bispectrum and the CMB power spectrum.
We develop a general framework for data analysis and phenomenology of the CMB four-point function or trispectrum. To lowest order in the derivative expansion, the inflationary action admits three quartic operators consistent with symmetry: $dotsigma^4$, $dotsigma^2 (partialsigma^2)$, and $(partialsigma)^4$. In single field inflation, only the first of these operators can be the leading non-Gaussian signal. A Fisher matrix analysis shows that there is one near-degeneracy among the three CMB trispectra, so we parameterize the trispectrum with two coefficients $g_{NL}^{dotsigma^4}$ and $g_{NL}^{(partialsigma)^4}$, in addition to the coefficient $g_{NL}^{rm loc}$ of $zeta^3$-type local non-Gaussianity. This three-parameter space is analogous to the parameter space $(f_{NL}^{rm loc}, f_{NL}^{rm equil}, f_{NL}^{rm orth})$ commonly used to parameterize the CMB three-point function. We next turn to data analysis and show how to represent these trispectra in a factorizable form which leads to computationally fast operations such as evaluating a CMB estimator or simulating a non-Gaussian CMB. We discuss practical issues in CMB analysis pipelines, and perform an optimal analysis of WMAP data. Our minimum-variance estimates are $g_{NL}^{rm loc} = (-3.80 pm 2.19) times 10^5$, $g_{NL}^{dotsigma^4} = (-3.20 pm 3.09) times 10^6$, and $g_{NL}^{(partialsigma)^4} = (-10.8 pm 6.33) times 10^5$ after correcting for the effects of CMB lensing. No evidence of a nonzero inflationary four-point function is seen.
Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. We estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at $2sigma$. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchy reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of $sim0.5$ as $Rgtrsim 10$ Mpc. Further, our constraint implies that large-scale $B$-modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of $rgtrsim0.001$ if the $B$ mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.