Do you want to publish a course? Click here

TROVE Feature Detection for Online Pose Recovery by Binocular Cameras

181   0   0.0 ( 0 )
 Added by Yuance Liu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper proposes a new and efficient method to estimate 6-DoF ego-states: attitudes and positions in real time. The proposed method extract information of ego-states by observing a feature called TROVE (Three Rays and One VErtex). TROVE features are projected from structures that are ubiquitous on man-made constructions and objects. The proposed method does not search for conventional corner-type features nor use Perspective-n-Point (PnP) methods, and it achieves a real-time estimation of attitudes and positions up to 60 Hz. The accuracy of attitude estimates can reach 0.3 degrees and that of position estimates can reach 2 cm in an indoor environment. The result shows a promising approach for unmanned robots to localize in an environment that is rich in man-made structures.



rate research

Read More

Stereo relative pose problem lies at the core of stereo visual odometry systems that are used in many applications. In this work, we present two minimal solvers for the stereo relative pose. We specifically consider the case when a minimal set consists of three point or line features and each of them has three known projections on two stereo cameras. We validate the importance of this formulation for practical purposes in our experiments with motion estimation. We then present a complete classification of minimal cases with three point or line correspondences each having three projections, and present two new solvers that can handle all such cases. We demonstrate a considerable effect from the integration of the new solvers into a visual SLAM system.
Multi-person articulated pose tracking in unconstrained videos is an important while challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design an online optimization framework to build the association of cross-frame poses and form pose flows (PF-Builder). Second, a novel pose flow non-maximum suppression (PF-NMS) is designed to robustly reduce redundant pose flows and re-link temporal disjoint ones. Extensive experiments show that our method significantly outperforms best-reported results on two standard Pose Tracking datasets by 13 mAP 25 MOTA and 6 mAP 3 MOTA respectively. Moreover, in the case of working on detected poses in individual frames, the extra computation of pose tracker is very minor, guaranteeing online 10FPS tracking. Our source codes are made publicly available(https://github.com/YuliangXiu/PoseFlow).
Object detection has been vigorously investigated for years but fast accurate detection for real-world scenes remains a very challenging problem. Overcoming drawbacks of single-stage detectors, we take aim at precisely detecting objects for static and temporal scenes in real time. Firstly, as a dual refinement mechanism, a novel anchor-offset detection is designed, which includes an anchor refinement, a feature location refinement, and a deformable detection head. This new detection mode is able to simultaneously perform two-step regression and capture accurate object features. Based on the anchor-offset detection, a dual refinement network (DRNet) is developed for high-performance static detection, where a multi-deformable head is further designed to leverage contextual information for describing objects. As for temporal detection in videos, temporal refinement networks (TRNet) and temporal dual refinement networks (TDRNet) are developed by propagating the refinement information across time. We also propose a soft refinement strategy to temporally match object motion with the previous refinement. Our proposed methods are evaluated on PASCAL VOC, COCO, and ImageNet VID datasets. Extensive comparisons on static and temporal detection verify the superiority of DRNet, TRNet, and TDRNet. Consequently, our developed approaches run in a fairly fast speed, and in the meantime achieve a significantly enhanced detection accuracy, i.e., 84.4% mAP on VOC 2007, 83.6% mAP on VOC 2012, 69.4% mAP on VID 2017, and 42.4% AP on COCO. Ultimately, producing encouraging results, our methods are applied to online underwater object detection and grasping with an autonomous system. Codes are publicly available at https://github.com/SeanChenxy/TDRN.
Up-to-date High-Definition (HD) maps are essential for self-driving cars. To achieve constantly updated HD maps, we present a deep neural network (DNN), Diff-Net, to detect changes in them. Compared to traditional methods based on object detectors, the essential design in our work is a parallel feature difference calculation structure that infers map changes by comparing features extracted from the camera and rasterized images. To generate these rasterized images, we project map elements onto images in the camera view, yielding meaningful map representations that can be consumed by a DNN accordingly. As we formulate the change detection task as an object detection problem, we leverage the anchor-based structure that predicts bounding boxes with different change status categories. Furthermore, rather than relying on single frame input, we introduce a spatio-temporal fusion module that fuses features from history frames into the current, thus improving the overall performance. Finally, we comprehensively validate our methods effectiveness using freshly collected datasets. Results demonstrate that our Diff-Net achieves better performance than the baseline methods and is ready to be integrated into a map production pipeline maintaining an up-to-date HD map.
Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose knowledge from a powerful teacher model to a less-parameterized student model. However, existing pose distillation works rely on a heavy pre-trained estimator to perform knowledge transfer and require a complex two-stage learning procedure. In this work, we investigate a novel Online Knowledge Distillation framework by distilling Human Pose structure knowledge in a one-stage manner to guarantee the distillation efficiency, termed OKDHP. Specifically, OKDHP trains a single multi-branch network and acquires the predicted heatmaps from each, which are then assembled by a Feature Aggregation Unit (FAU) as the target heatmaps to teach each branch in reverse. Instead of simply averaging the heatmaps, FAU which consists of multiple parallel transformations with different receptive fields, leverages the multi-scale information, thus obtains target heatmaps with higher-quality. Specifically, the pixel-wise Kullback-Leibler (KL) divergence is utilized to minimize the discrepancy between the target heatmaps and the predicted ones, which enables the student network to learn the implicit keypoint relationship. Besides, an unbalanced OKDHP scheme is introduced to customize the student networks with different compression rates. The effectiveness of our approach is demonstrated by extensive experiments on two common benchmark datasets, MPII and COCO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا